A novel TFNi pervaporation membrane with g-C3N4 quantum dots for high-efficiency IPA dehydration

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-10-24 DOI:10.1016/j.memsci.2024.123451
Jia-Rui Yang, Yu-Fei Lin, Zhen-Liang Xu, Rui Jia, Yin-Xin Fang
{"title":"A novel TFNi pervaporation membrane with g-C3N4 quantum dots for high-efficiency IPA dehydration","authors":"Jia-Rui Yang,&nbsp;Yu-Fei Lin,&nbsp;Zhen-Liang Xu,&nbsp;Rui Jia,&nbsp;Yin-Xin Fang","doi":"10.1016/j.memsci.2024.123451","DOIUrl":null,"url":null,"abstract":"<div><div>Pervaporation (PV) shows significant potential for the highly selective isopropanol (IPA). The pursuit of developing PV membranes with outstanding separation effect and enduring high purity permeation is an indispensable goal. Based on polyamide (PA) separation layers, a polydopamine (PDA) mixed g-C<sub>3</sub>N<sub>4</sub> quantum dots (gCNQDs) coating as the interlayer was deposited onto a porous ceramic hollow fiber substrate to fabricate thin-film nanocomposite membranes with an interlayer (TFNi). The nanocomposite interlayer enabled the formation of a smoother and highly separated selective polyamide layer. The separation factor exhibited a 31-fold enhancement with the augmentation of the blending fraction of gCNQDs during the PDA coating process. The resulting TFNi membrane attained an exceedingly high separation factor of 10270 ± 90 with a permeate water concentration of 99.9 % and demonstrated a satisfactory flux of 1.40 ± 0.08 kg m<sup>−2</sup> h<sup>−1</sup> during the PV process of 90 wt% IPA dehydration at 60 °C. This study presents a fresh perspective on the implementation of nanocomposite interlayers, which is expected to expand the application of high-performance TFNi membranes in PV dehydration processes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123451"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010457","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pervaporation (PV) shows significant potential for the highly selective isopropanol (IPA). The pursuit of developing PV membranes with outstanding separation effect and enduring high purity permeation is an indispensable goal. Based on polyamide (PA) separation layers, a polydopamine (PDA) mixed g-C3N4 quantum dots (gCNQDs) coating as the interlayer was deposited onto a porous ceramic hollow fiber substrate to fabricate thin-film nanocomposite membranes with an interlayer (TFNi). The nanocomposite interlayer enabled the formation of a smoother and highly separated selective polyamide layer. The separation factor exhibited a 31-fold enhancement with the augmentation of the blending fraction of gCNQDs during the PDA coating process. The resulting TFNi membrane attained an exceedingly high separation factor of 10270 ± 90 with a permeate water concentration of 99.9 % and demonstrated a satisfactory flux of 1.40 ± 0.08 kg m−2 h−1 during the PV process of 90 wt% IPA dehydration at 60 °C. This study presents a fresh perspective on the implementation of nanocomposite interlayers, which is expected to expand the application of high-performance TFNi membranes in PV dehydration processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有 g-C3N4 量子点的新型 TFNi 渗透膜用于高效 IPA 脱水
渗透(PV)技术在高选择性异丙醇(IPA)方面显示出巨大潜力。开发具有出色分离效果和持久高纯度渗透性的 PV 膜是一个不可或缺的目标。在聚酰胺(PA)分离层的基础上,将聚多巴胺(PDA)混合 g-C3N4 量子点(gCNQDs)涂层作为中间层沉积在多孔陶瓷中空纤维基底上,制备出带有中间层(TFNi)的薄膜纳米复合膜。纳米复合中间层能够形成更平滑、高度分离的选择性聚酰胺层。在 PDA 涂层过程中,随着 gCNQDs 混合比例的增加,分离因子提高了 31 倍。所制备的 TFNi 膜在渗透水浓度为 99.9% 的情况下达到了 10270 ± 90 的超高分离因子,在 60 °C 下 90 wt% IPA 脱水的 PV 过程中,通量达到了令人满意的 1.40 ± 0.08 kg m-2 h-1。这项研究为纳米复合夹层的应用提供了一个全新的视角,有望扩大高性能 TFNi 膜在光伏脱水工艺中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Stringing covalent organic framework particles for preparing highly loaded mixed-matrix membranes for efficient and precise dye separation High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer Lattice-defective metal-organic framework membranes from filling mesoporous colloidal networks for monovalent ion separation Methanol tolerable ultrathin proton exchange membrane fabricated via in-situ ionic self-crosslinking strategy for high-performance DMFCs Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1