{"title":"A novel TFNi pervaporation membrane with g-C3N4 quantum dots for high-efficiency IPA dehydration","authors":"Jia-Rui Yang, Yu-Fei Lin, Zhen-Liang Xu, Rui Jia, Yin-Xin Fang","doi":"10.1016/j.memsci.2024.123451","DOIUrl":null,"url":null,"abstract":"<div><div>Pervaporation (PV) shows significant potential for the highly selective isopropanol (IPA). The pursuit of developing PV membranes with outstanding separation effect and enduring high purity permeation is an indispensable goal. Based on polyamide (PA) separation layers, a polydopamine (PDA) mixed g-C<sub>3</sub>N<sub>4</sub> quantum dots (gCNQDs) coating as the interlayer was deposited onto a porous ceramic hollow fiber substrate to fabricate thin-film nanocomposite membranes with an interlayer (TFNi). The nanocomposite interlayer enabled the formation of a smoother and highly separated selective polyamide layer. The separation factor exhibited a 31-fold enhancement with the augmentation of the blending fraction of gCNQDs during the PDA coating process. The resulting TFNi membrane attained an exceedingly high separation factor of 10270 ± 90 with a permeate water concentration of 99.9 % and demonstrated a satisfactory flux of 1.40 ± 0.08 kg m<sup>−2</sup> h<sup>−1</sup> during the PV process of 90 wt% IPA dehydration at 60 °C. This study presents a fresh perspective on the implementation of nanocomposite interlayers, which is expected to expand the application of high-performance TFNi membranes in PV dehydration processes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123451"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010457","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pervaporation (PV) shows significant potential for the highly selective isopropanol (IPA). The pursuit of developing PV membranes with outstanding separation effect and enduring high purity permeation is an indispensable goal. Based on polyamide (PA) separation layers, a polydopamine (PDA) mixed g-C3N4 quantum dots (gCNQDs) coating as the interlayer was deposited onto a porous ceramic hollow fiber substrate to fabricate thin-film nanocomposite membranes with an interlayer (TFNi). The nanocomposite interlayer enabled the formation of a smoother and highly separated selective polyamide layer. The separation factor exhibited a 31-fold enhancement with the augmentation of the blending fraction of gCNQDs during the PDA coating process. The resulting TFNi membrane attained an exceedingly high separation factor of 10270 ± 90 with a permeate water concentration of 99.9 % and demonstrated a satisfactory flux of 1.40 ± 0.08 kg m−2 h−1 during the PV process of 90 wt% IPA dehydration at 60 °C. This study presents a fresh perspective on the implementation of nanocomposite interlayers, which is expected to expand the application of high-performance TFNi membranes in PV dehydration processes.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.