Mathematical modeling of bioactive glass degradation

IF 3.2 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of Non-crystalline Solids Pub Date : 2024-10-19 DOI:10.1016/j.jnoncrysol.2024.123265
{"title":"Mathematical modeling of bioactive glass degradation","authors":"","doi":"10.1016/j.jnoncrysol.2024.123265","DOIUrl":null,"url":null,"abstract":"<div><div>Bioactive glasses (BGs) are promising for bone tissue engineering (BTE). Mathematical modeling is a powerful tool for understanding BTE scaffold degradation. We developed mathematical functions based on chemical reaction equations governing dissolution and diffusion processes to model the degradation of 45S5 BGs. An empirical mathematical model was employed to characterize the formation process of hydroxycarbonate apatite (HCA). Two sets of numerical simulations with BG powder and bulk samples immersed in simulated body fluid were compared with in vitro experiments to validate and parameterize the model. The model could accurately predict BG degradation and HCA formation. Our findings indicate that the proposed parameters <em>K</em><sub>1</sub>=2600 mm/(μmol·h), <em>K</em><sub>2</sub>=2.0 mm/h and <em>K</em><sub>3</sub>=0.001 mm/h are suitable for simulating the degradation of silicate-based BGs, specifically 45S5 BG. The proposed model successfully predicted the degradation behavior and subsequent HCA formation over 21 days. The proposed mathematical model serves as a valuable tool for designing degradable BG-containing scaffolds.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324004423","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive glasses (BGs) are promising for bone tissue engineering (BTE). Mathematical modeling is a powerful tool for understanding BTE scaffold degradation. We developed mathematical functions based on chemical reaction equations governing dissolution and diffusion processes to model the degradation of 45S5 BGs. An empirical mathematical model was employed to characterize the formation process of hydroxycarbonate apatite (HCA). Two sets of numerical simulations with BG powder and bulk samples immersed in simulated body fluid were compared with in vitro experiments to validate and parameterize the model. The model could accurately predict BG degradation and HCA formation. Our findings indicate that the proposed parameters K1=2600 mm/(μmol·h), K2=2.0 mm/h and K3=0.001 mm/h are suitable for simulating the degradation of silicate-based BGs, specifically 45S5 BG. The proposed model successfully predicted the degradation behavior and subsequent HCA formation over 21 days. The proposed mathematical model serves as a valuable tool for designing degradable BG-containing scaffolds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物活性玻璃降解的数学建模
生物活性玻璃(BGs)在骨组织工程(BTE)中大有可为。数学建模是了解 BTE 支架降解的有力工具。我们根据管理溶解和扩散过程的化学反应方程开发了数学函数,以模拟 45S5 生物活性玻璃的降解过程。我们采用了一个经验数学模型来描述羟基碳酸盐磷灰石(HCA)的形成过程。将两组浸入模拟体液中的 BG 粉末和块状样品的数值模拟与体外实验进行了比较,以验证该模型并确定其参数。该模型可准确预测 BG 降解和 HCA 的形成。我们的研究结果表明,所提出的参数 K1=2600 mm/(μmol-h)、K2=2.0 mm/h 和 K3=0.001 mm/h 适用于模拟硅酸盐基 BG(特别是 45S5 BG)的降解。所提出的模型成功地预测了 21 天内的降解行为和随后 HCA 的形成。所提出的数学模型是设计可降解含 BG 支架的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Non-crystalline Solids
Journal of Non-crystalline Solids 工程技术-材料科学:硅酸盐
CiteScore
6.50
自引率
11.40%
发文量
576
审稿时长
35 days
期刊介绍: The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid. In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.
期刊最新文献
Molecular dynamics simulation of shock-induced plastic deformation and spallation behavior of Cu/Cu64Zr36 crystalline/amorphous composites Configuration entropy and non-Arrhenius behavior in the α relaxation of glassy dielectrics Surface of silicate glass exposed to water Investigation of ZnO-B2O3-SiO2 glass and its application for joining AlN ceramic The rebound law of micro-particle on amorphous alloys under high impact velocities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1