Malik Hassan , Manjusri Misra , Graham W. Taylor , Amar K. Mohanty
{"title":"A review of AI for optimization of 3D printing of sustainable polymers and composites","authors":"Malik Hassan , Manjusri Misra , Graham W. Taylor , Amar K. Mohanty","doi":"10.1016/j.jcomc.2024.100513","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, 3D printing has experienced significant growth in the manufacturing sector due to its ability to produce intricate and customized components. The advent of Industry 4.0 further boosted this progress by seamlessly incorporating artificial intelligence (AI) in 3D printing processes. As a result, design precision and production efficiency have significantly improved. Although numerous studies have explored the integration of AI and 3D printing, the literature still lacks a comprehensive overview that emphasizes material selection and formulation, predictive modeling, design optimization, and quality control. To fully understand the impacts of these emerging technologies on advanced manufacturing, a thorough assessment is required. This review aims to examine the intersection of AI and 3D printing to create a technologically advanced and environment-friendly manufacturing environment. It examines factors such as material, process efficiency, and design enhancements to highlight the benefits of combining these technologies. By focusing on predictive modeling, material selection and quality control, this analysis aims to unlock the potential for a sustainable and efficient 3D printing process. This review provided a thorough analysis of the challenges and potential benefits, proving valuable for academics and practitioners alike. It presents solutions that may establish a foundation for sustained growth and outlines a strategy for leveraging 3D printing and AI capabilities in the manufacturing sector.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100513"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, 3D printing has experienced significant growth in the manufacturing sector due to its ability to produce intricate and customized components. The advent of Industry 4.0 further boosted this progress by seamlessly incorporating artificial intelligence (AI) in 3D printing processes. As a result, design precision and production efficiency have significantly improved. Although numerous studies have explored the integration of AI and 3D printing, the literature still lacks a comprehensive overview that emphasizes material selection and formulation, predictive modeling, design optimization, and quality control. To fully understand the impacts of these emerging technologies on advanced manufacturing, a thorough assessment is required. This review aims to examine the intersection of AI and 3D printing to create a technologically advanced and environment-friendly manufacturing environment. It examines factors such as material, process efficiency, and design enhancements to highlight the benefits of combining these technologies. By focusing on predictive modeling, material selection and quality control, this analysis aims to unlock the potential for a sustainable and efficient 3D printing process. This review provided a thorough analysis of the challenges and potential benefits, proving valuable for academics and practitioners alike. It presents solutions that may establish a foundation for sustained growth and outlines a strategy for leveraging 3D printing and AI capabilities in the manufacturing sector.
近年来,3D 打印技术凭借其生产复杂和定制化组件的能力,在制造业中取得了长足的发展。工业 4.0 的出现将人工智能(AI)无缝融入 3D 打印流程,进一步推动了这一进步。因此,设计精度和生产效率显著提高。虽然已有大量研究探讨了人工智能与三维打印的融合,但文献中仍缺乏对材料选择和配方、预测建模、设计优化和质量控制等方面的全面概述。要充分了解这些新兴技术对先进制造业的影响,需要进行全面评估。本综述旨在研究人工智能与 3D 打印的交叉点,以创建技术先进、环境友好的制造环境。它研究了材料、流程效率和设计改进等因素,以突出这些技术相结合的优势。通过重点关注预测建模、材料选择和质量控制,本分析旨在发掘可持续高效 3D 打印工艺的潜力。本综述对挑战和潜在益处进行了透彻分析,对学术界和从业人员都很有价值。它提出了可为持续增长奠定基础的解决方案,并概述了在制造业中利用 3D 打印和人工智能能力的战略。