Da Chen , Jie Zhang , Lihui Wu , Peng Zhang , Ming Wang
{"title":"Industrial data space application framework for semiconductor wafer manufacturing system scheduling","authors":"Da Chen , Jie Zhang , Lihui Wu , Peng Zhang , Ming Wang","doi":"10.1016/j.jmsy.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>The complex, large-scale semiconductor wafer manufacturing generates substantial diverse data, creating management hurdles and making efficient use of historical scheduling data difficult. To address these challenges, we propose a four-layer application framework for industrial data space for wafer manufacturing system (IDWFS). Firstly, a multi-level model ontology centred on scheduling tasks is constructed to effectively map the evolution of elemental relationships during wafer processing and adaptively change the data organisation. Then, a system architecture for mining the correlation between dynamic and static element data is proposed to fully explore the spatiotemporal correlation relationship of data elements in the processing process. Finally, a scheduling system architecture of “learning + prediction + scheduling” is proposed to fully utilise the scheduling historical domain knowledge and data correlation relationship in semiconductor wafer manufacturing system during the scheduling process. In addition, through three case studies related to the scheduling of semiconductor wafer manufacturing system, IDWFS is effective in heterogeneous data management, coupling relationship mining of element data, logistics scheduling processing, etc., thereby achieving logistics scheduling control of wafer manufacturing system.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 464-482"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The complex, large-scale semiconductor wafer manufacturing generates substantial diverse data, creating management hurdles and making efficient use of historical scheduling data difficult. To address these challenges, we propose a four-layer application framework for industrial data space for wafer manufacturing system (IDWFS). Firstly, a multi-level model ontology centred on scheduling tasks is constructed to effectively map the evolution of elemental relationships during wafer processing and adaptively change the data organisation. Then, a system architecture for mining the correlation between dynamic and static element data is proposed to fully explore the spatiotemporal correlation relationship of data elements in the processing process. Finally, a scheduling system architecture of “learning + prediction + scheduling” is proposed to fully utilise the scheduling historical domain knowledge and data correlation relationship in semiconductor wafer manufacturing system during the scheduling process. In addition, through three case studies related to the scheduling of semiconductor wafer manufacturing system, IDWFS is effective in heterogeneous data management, coupling relationship mining of element data, logistics scheduling processing, etc., thereby achieving logistics scheduling control of wafer manufacturing system.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.