{"title":"Ultrafast and one-step coating sporopollenin exine capsules with metal-phenolic networks for bio-composite applications","authors":"Sheng Zhou , Dengxian Wu , Guanjie Zhou , Qing Jiang , Zhihong Xu","doi":"10.1016/j.matdes.2024.113390","DOIUrl":null,"url":null,"abstract":"<div><div>Sporopollenin exine capsules (SECs), extracted from plant pollen grains, are becoming increasingly popular as natural microcapsules for a broad spectrum of bio-composite applications due to their plentiful supply, resilience to chemicals and physical stress, unique species-specific designs, exceptional consistency in structure, and significant internal volume. However, SECs have a relatively bioinert interface hindering their application in biomaterials. Thus, surface modification is an efficient strategy to convert SECs into biocompatible materials better for biological applications. Previous approaches predominantly depend on labor-intensive, multi-stage procedures that are time-consuming. Herein, we report an ultrafast, one-step, and effective modification strategy to render SECs biocompatibility by coating them with ferric ions and tannic acids, which endow them with a better cell adhesion property. In summary, our results show that this ultrafast and one-step biocompatibility strategy enhances the functional characteristics of SECs and holds wide-ranging implications for bio-composite applications.</div><div>.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113390"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007652","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sporopollenin exine capsules (SECs), extracted from plant pollen grains, are becoming increasingly popular as natural microcapsules for a broad spectrum of bio-composite applications due to their plentiful supply, resilience to chemicals and physical stress, unique species-specific designs, exceptional consistency in structure, and significant internal volume. However, SECs have a relatively bioinert interface hindering their application in biomaterials. Thus, surface modification is an efficient strategy to convert SECs into biocompatible materials better for biological applications. Previous approaches predominantly depend on labor-intensive, multi-stage procedures that are time-consuming. Herein, we report an ultrafast, one-step, and effective modification strategy to render SECs biocompatibility by coating them with ferric ions and tannic acids, which endow them with a better cell adhesion property. In summary, our results show that this ultrafast and one-step biocompatibility strategy enhances the functional characteristics of SECs and holds wide-ranging implications for bio-composite applications.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.