{"title":"An in-silico approach to target multiple proteins involved in anti-microbial resistance using natural compounds produced by wild mushrooms","authors":"Gagandeep Singh , Md Alamgir Hossain , Dhurgham Al-Fahad , Vandana Gupta , Smriti Tandon , Hemant Soni , Cheemalapati Venkata Narasimhaji , Mariusz Jaremko , Abdul-Hamid Emwas , Md Jamir Anwar , Faizul Azam","doi":"10.1016/j.bbrep.2024.101854","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial resistance to antibiotics and the number of patients infected by multi-drug-resistant bacteria have increased significantly over the past decade. This study follows a computational approach to identify potential antibacterial compounds from wild mushrooms. Twenty-six known compounds produced by wild mushrooms were docked to assess their affinity with drug targets of antibiotics such as penicillin-binding protein-1a (PBP1a), DNA gyrase, and isoleucyl-tRNA synthetase (ILERS). Docking scores were further validated by multiple receptor conformer (MRC)-based docking studies. Based on the MRC-based docking results, eight molecules were shortlisted for ADMET analysis. Molecular dynamics (MD) simulations were further performed to evaluate the conformational stability of the ligand-protein complexes. Binding energies were computed by the gmx_MMPBSA method. The data were obtained in terms of root-mean square deviation, and root-mean square fluctuation justified the stability of Austrocortilutein A, Austrocortirubin, and Confluentin in complex with several proteins under physiological conditions. Among these, Austrocortilutein A displayed better binding affinity with PBP1a and ILERS when compared with their respective reference ligands. This study is preliminary and aims to help drive the search for compounds that have the capacity to overcome the anti-microbial resistance of prevalent bacteria, using natural compounds produced by wild mushrooms. Further experimental validation is required to justify the clinical use of the studied compounds.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"40 ","pages":"Article 101854"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial resistance to antibiotics and the number of patients infected by multi-drug-resistant bacteria have increased significantly over the past decade. This study follows a computational approach to identify potential antibacterial compounds from wild mushrooms. Twenty-six known compounds produced by wild mushrooms were docked to assess their affinity with drug targets of antibiotics such as penicillin-binding protein-1a (PBP1a), DNA gyrase, and isoleucyl-tRNA synthetase (ILERS). Docking scores were further validated by multiple receptor conformer (MRC)-based docking studies. Based on the MRC-based docking results, eight molecules were shortlisted for ADMET analysis. Molecular dynamics (MD) simulations were further performed to evaluate the conformational stability of the ligand-protein complexes. Binding energies were computed by the gmx_MMPBSA method. The data were obtained in terms of root-mean square deviation, and root-mean square fluctuation justified the stability of Austrocortilutein A, Austrocortirubin, and Confluentin in complex with several proteins under physiological conditions. Among these, Austrocortilutein A displayed better binding affinity with PBP1a and ILERS when compared with their respective reference ligands. This study is preliminary and aims to help drive the search for compounds that have the capacity to overcome the anti-microbial resistance of prevalent bacteria, using natural compounds produced by wild mushrooms. Further experimental validation is required to justify the clinical use of the studied compounds.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.