Marcus Hans , Jochen M. Schneider , Allan Matthews , Christian Mitterer
{"title":"Perspective on pathways towards responsible surface engineering","authors":"Marcus Hans , Jochen M. Schneider , Allan Matthews , Christian Mitterer","doi":"10.1016/j.surfcoat.2024.131486","DOIUrl":null,"url":null,"abstract":"<div><div>In this perspective sustainability-relevant aspects of modern surface engineering technologies, which enable improved structural and functional surface properties, are critically evaluated. Although plasma-assisted physical vapour deposition (PVD) is increasingly employed to address global challenges, such as energy efficiency and reduction of CO<sub>2</sub> emissions, their inherently resource-intensive nature is often not considered.</div><div>Surface engineering research should thus embrace sustainability-relevant aspects from a processes and materials design point of view. While we are convinced that sustainability-relevant surface engineering has to be based on synchronised process and materials solutions, we will discuss processes and materials separately.</div><div>In terms of processes, we are going to describe the challenges of state-of-the-art technology, including energy and mass balances as well as product cycles. With respect to materials, the coating and process purity as well as chemical and microstructural complexity are discussed.</div><div>Such approaches are fully in line with the United Nations Sustainable Development Goal 12 <em>Responsible Consumption and Production</em>. We expect that the here discussed urgently needed pathways towards responsible surface engineering will become important for the surface engineering community and adopted within the near future. Responsible surface engineering includes the human behaviour and necessitates a change in mindset of materials scientists and process engineers. Hence, two main questions are critically evaluated in this perspective:<ul><li><span>1)</span><span><div>What are sustainability-relevant aspects of PVD processes and materials?</div></span></li><li><span>2)</span><span><div>Which pathways are available to move towards responsible surface engineering?</div></span></li></ul></div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131486"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224011174","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this perspective sustainability-relevant aspects of modern surface engineering technologies, which enable improved structural and functional surface properties, are critically evaluated. Although plasma-assisted physical vapour deposition (PVD) is increasingly employed to address global challenges, such as energy efficiency and reduction of CO2 emissions, their inherently resource-intensive nature is often not considered.
Surface engineering research should thus embrace sustainability-relevant aspects from a processes and materials design point of view. While we are convinced that sustainability-relevant surface engineering has to be based on synchronised process and materials solutions, we will discuss processes and materials separately.
In terms of processes, we are going to describe the challenges of state-of-the-art technology, including energy and mass balances as well as product cycles. With respect to materials, the coating and process purity as well as chemical and microstructural complexity are discussed.
Such approaches are fully in line with the United Nations Sustainable Development Goal 12 Responsible Consumption and Production. We expect that the here discussed urgently needed pathways towards responsible surface engineering will become important for the surface engineering community and adopted within the near future. Responsible surface engineering includes the human behaviour and necessitates a change in mindset of materials scientists and process engineers. Hence, two main questions are critically evaluated in this perspective:
1)
What are sustainability-relevant aspects of PVD processes and materials?
2)
Which pathways are available to move towards responsible surface engineering?
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.