Unveiling the structure–activity relationships of tetracycline degradation by photocatalytic activation peroxymonosulfate of CuBi2O4 microspheres: DFT calculation and mechanism insight

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-08-30 DOI:10.1016/j.jmat.2024.100934
Jin Wang , Jiaming Li , Yuan Li, Gaoke Zhang
{"title":"Unveiling the structure–activity relationships of tetracycline degradation by photocatalytic activation peroxymonosulfate of CuBi2O4 microspheres: DFT calculation and mechanism insight","authors":"Jin Wang ,&nbsp;Jiaming Li ,&nbsp;Yuan Li,&nbsp;Gaoke Zhang","doi":"10.1016/j.jmat.2024.100934","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving efficient photocatalytic activation of peroxymonosulfate (PMS) degradation of pollutants through the regulation strategy of surface microstructure in catalysts remains a challenge. Herein, CuBi<sub>2</sub>O<sub>4</sub> nanorods (CBO NRs) and CuBi<sub>2</sub>O<sub>4</sub> microspheres (CBO Ms) were synthesized by simply regulating the alkalinity of the reaction solvent. Under full–spectrum irradiation, CBO Ms exhibited remarkable photocatalytic performance, removing 92.48% of tetracycline (TC) within 12 min, with the reaction rate constant reaching 0.2135 min<sup>−1</sup>, which is approximately 2.7 times that of CBO NRs (0.0798 min<sup>−1</sup>). The exposure of oxygen vacancies on the surface of CBO Ms significantly promoted the generation and migration of photogenerated carriers internally, accelerated charge accumulation at the Cu active sites on the surface, and thereby enhanced the adsorption of CBO Ms on PMS. The charge density difference results confirmed the rapid transference of surface–enriched electrons to the PMS, facilitating further activation of PMS. Radical quenching experiment and EPR testing verified that both radical (SO<sub>4</sub><sup>•−</sup>, •OH) and non–radical (<sup>1</sup>O<sub>2</sub>) pathways were involved in the reaction system. This study offers novel insights into the design of catalysts for the photocatalytic activation of PMS to efficiently degrade environmental pollutants.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100934"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001734","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving efficient photocatalytic activation of peroxymonosulfate (PMS) degradation of pollutants through the regulation strategy of surface microstructure in catalysts remains a challenge. Herein, CuBi2O4 nanorods (CBO NRs) and CuBi2O4 microspheres (CBO Ms) were synthesized by simply regulating the alkalinity of the reaction solvent. Under full–spectrum irradiation, CBO Ms exhibited remarkable photocatalytic performance, removing 92.48% of tetracycline (TC) within 12 min, with the reaction rate constant reaching 0.2135 min−1, which is approximately 2.7 times that of CBO NRs (0.0798 min−1). The exposure of oxygen vacancies on the surface of CBO Ms significantly promoted the generation and migration of photogenerated carriers internally, accelerated charge accumulation at the Cu active sites on the surface, and thereby enhanced the adsorption of CBO Ms on PMS. The charge density difference results confirmed the rapid transference of surface–enriched electrons to the PMS, facilitating further activation of PMS. Radical quenching experiment and EPR testing verified that both radical (SO4•−, •OH) and non–radical (1O2) pathways were involved in the reaction system. This study offers novel insights into the design of catalysts for the photocatalytic activation of PMS to efficiently degrade environmental pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示 CuBi2O4 微球光催化活化过硫酸盐降解四环素的结构-活性关系:DFT 计算与机理研究
通过调节催化剂的表面微结构来实现高效光催化激活过一硫酸盐(PMS)降解污染物仍然是一项挑战。本文通过简单调节反应溶剂的碱度,合成了 CuBi2O4 纳米棒(CBO NRs)和 CuBi2O4 微球(CBO Ms)。在全光谱辐照下,CBO Ms表现出显著的光催化性能,在12分钟内去除92.48%的四环素(TC),反应速率常数达到0.2135 min-1,约为CBO NRs(0.0798 min-1)的2.7倍。CBO Ms 表面氧空位的暴露极大地促进了光生载流子在内部的生成和迁移,加速了表面 Cu 活性位点的电荷积累,从而增强了 CBO Ms 在 PMS 上的吸附。电荷密度差结果证实了表面富集的电子迅速转移到 PMS 上,促进了 PMS 的进一步活化。自由基淬灭实验和 EPR 测试证实,反应体系中同时存在自由基(SO4--、-OH)和非自由基(1O2)途径。这项研究为设计光催化活化 PMS 以高效降解环境污染物的催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Convenient synthesis of hollow tubular In2O3/PDA S-scheme inorganic/organic heterojunction photocatalyst for H2O2 production and its mechanism Synergistic effects lead to high thermoelectric performance of iodine doped pseudo-binary layered GeSb2Te4 Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics High temperature magnetoelectric effect in Fe2TeO6 F− surface modified ZnO for enhanced photocatalytic H2O2 production and its fs-TAS investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1