Crystallographically programmed kirigami metamaterials

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2024-10-10 DOI:10.1016/j.jmps.2024.105903
Ruoqi He , Yao Chen , Jingbing Liang , Yue Sun , Jian Feng , Pooya Sareh
{"title":"Crystallographically programmed kirigami metamaterials","authors":"Ruoqi He ,&nbsp;Yao Chen ,&nbsp;Jingbing Liang ,&nbsp;Yue Sun ,&nbsp;Jian Feng ,&nbsp;Pooya Sareh","doi":"10.1016/j.jmps.2024.105903","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, lattice kirigami metamaterials have attracted considerable attention due to their unconventional and often intriguing mechanical properties. However, the absence of a comprehensive analytical framework has hindered advancements in both research and practical applications. Here, we introduce an integrated framework that enables the customization, form-finding, analysis, and manufacturing of polygonal lattice kirigami metamaterials (PLKMs). By employing a strain-energy-based method, we derive the effective mechanical properties of these systems and demonstrate that structural design is an effective strategy for tailoring these properties. Additionally, we introduce a group-theory-based method for generating crystallographic kirigami metamaterials through selective symmetry breaking, complemented by lattice theory to capture and program their structural characteristics. An automated workflow is also developed for modeling, analysis, and manufacturing of these metamaterials, followed by an image-processing-based design algorithm for composite PLKMs. To illustrate the capabilities of the proposed integrated framework, we explore its potential in driving innovative applications for PLKMs. It is anticipated that this work will provide valuable insights into potential innovations in kirigami metamaterial research and engineering.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105903"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003697","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, lattice kirigami metamaterials have attracted considerable attention due to their unconventional and often intriguing mechanical properties. However, the absence of a comprehensive analytical framework has hindered advancements in both research and practical applications. Here, we introduce an integrated framework that enables the customization, form-finding, analysis, and manufacturing of polygonal lattice kirigami metamaterials (PLKMs). By employing a strain-energy-based method, we derive the effective mechanical properties of these systems and demonstrate that structural design is an effective strategy for tailoring these properties. Additionally, we introduce a group-theory-based method for generating crystallographic kirigami metamaterials through selective symmetry breaking, complemented by lattice theory to capture and program their structural characteristics. An automated workflow is also developed for modeling, analysis, and manufacturing of these metamaterials, followed by an image-processing-based design algorithm for composite PLKMs. To illustrate the capabilities of the proposed integrated framework, we explore its potential in driving innovative applications for PLKMs. It is anticipated that this work will provide valuable insights into potential innovations in kirigami metamaterial research and engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶体编程叽里呱啦超材料
近年来,晶格叽里咕噜超材料因其非传统且往往引人入胜的机械特性而备受关注。然而,由于缺乏全面的分析框架,阻碍了研究和实际应用的进展。在这里,我们介绍了一个综合框架,它可以实现多边形晶格叽里咕噜超材料(PLKMs)的定制、形状搜索、分析和制造。通过采用基于应变能的方法,我们得出了这些系统的有效力学性能,并证明结构设计是定制这些性能的有效策略。此外,我们还介绍了一种基于群论的方法,通过选择性对称破缺生成晶体学叽里呱啦超材料,并辅以晶格理论捕捉和编程其结构特征。此外,还为这些超材料的建模、分析和制造开发了一个自动化工作流程,随后又为复合 PLKM 开发了一种基于图像处理的设计算法。为了说明所提议的集成框架的能力,我们探讨了它在推动 PLKM 创新应用方面的潜力。预计这项工作将为叽里咕噜超材料研究和工程领域的潜在创新提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
Imperfection-insensitive flexible random network materials with horseshoe microstructures Finite strain continuum phenomenological model describing the shape-memory effects in multi-phase semi-crystalline networks A static and dynamic theory for photo-flexoelectric liquid crystal elastomers and the coupling of light, deformation and electricity Mechanical properties of modular assembled composite lattice architecture The positioning of stress fibers in contractile cells minimizes internal mechanical stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1