Big data and machine learning-based decision support system to reshape the vaticination of insurance claims

IF 12.9 1区 管理学 Q1 BUSINESS Technological Forecasting and Social Change Pub Date : 2024-10-19 DOI:10.1016/j.techfore.2024.123829
Rachana Jaiswal , Shashank Gupta , Aviral Kumar Tiwari
{"title":"Big data and machine learning-based decision support system to reshape the vaticination of insurance claims","authors":"Rachana Jaiswal ,&nbsp;Shashank Gupta ,&nbsp;Aviral Kumar Tiwari","doi":"10.1016/j.techfore.2024.123829","DOIUrl":null,"url":null,"abstract":"<div><div>Based on actuarial science theory, decision-making theory, and anonymous big data, this study employs machine learning to advance insurance claim forecasting, aiming to enhance pricing accuracy, mitigate adverse selection risks, and optimize operational efficiency for improved customer satisfaction and global competitiveness. The study utilized the Boruta algorithm with LightGBM for feature selection, analyzing a 57-dimensional dataset and identifying an optimal subset of 24 features. The improved LightGBM model achieved superior results (AUC ∼ 0.9272 and accuracy ∼ 92.94 %), surpassing other models evaluated. Beyond operational improvements, the proposed model holds the potential to contribute to various United Nations SDGs, such as promoting financial inclusion (SDG 1; SDG 10), reducing fraud, improving public safety (SDG 3; SDG 11; SDG 13), and encouraging sustainable practices (SDG 9; SDG 11). By utilizing data-driven insights to make more informed and accurate decisions, insurance companies can provide better services to their policyholders and contribute to a more equitable and sustainable society.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"209 ","pages":"Article 123829"},"PeriodicalIF":12.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162524006279","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on actuarial science theory, decision-making theory, and anonymous big data, this study employs machine learning to advance insurance claim forecasting, aiming to enhance pricing accuracy, mitigate adverse selection risks, and optimize operational efficiency for improved customer satisfaction and global competitiveness. The study utilized the Boruta algorithm with LightGBM for feature selection, analyzing a 57-dimensional dataset and identifying an optimal subset of 24 features. The improved LightGBM model achieved superior results (AUC ∼ 0.9272 and accuracy ∼ 92.94 %), surpassing other models evaluated. Beyond operational improvements, the proposed model holds the potential to contribute to various United Nations SDGs, such as promoting financial inclusion (SDG 1; SDG 10), reducing fraud, improving public safety (SDG 3; SDG 11; SDG 13), and encouraging sustainable practices (SDG 9; SDG 11). By utilizing data-driven insights to make more informed and accurate decisions, insurance companies can provide better services to their policyholders and contribute to a more equitable and sustainable society.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据和机器学习的决策支持系统,重塑保险理赔流程
本研究基于精算科学理论、决策理论和匿名大数据,利用机器学习推进保险索赔预测,旨在提高定价准确性、降低逆向选择风险、优化运营效率,从而提高客户满意度和全球竞争力。该研究利用 Boruta 算法和 LightGBM 进行特征选择,分析了 57 维数据集,并确定了 24 个特征的最佳子集。改进后的 LightGBM 模型取得了优异的结果(AUC ∼ 0.9272,准确率 ∼ 92.94 %),超过了其他评估模型。除了业务改进之外,所提出的模型还有可能为联合国的各种可持续发展目标做出贡献,如促进金融包容性(可持续发展目标 1;可持续发展目标 10)、减少欺诈、改善公共安全(可持续发展目标 3;可持续发展目标 11;可持续发展目标 13)以及鼓励可持续实践(可持续发展目标 9;可持续发展目标 11)。通过利用数据驱动的洞察力做出更明智、更准确的决策,保险公司可以为其保单持有人提供更好的服务,并为一个更加公平和可持续的社会做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
期刊最新文献
Roles of related and unrelated external technologies in shaping regional breakthrough technological advantages Standardization and Standards: Safeguards of Technological Sovereignty? Understanding service robot adoption and resistance from a service provider perspective Examining trust in cryptocurrency investment: Insights from the structural equation modeling Enabling a viable circular ecosystem for electric vehicle batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1