Rejuvenation of La-based metallic glass by controlling different modes of relaxation

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-10-19 DOI:10.1016/j.scriptamat.2024.116418
Yifan Yang, Jing Geng, Yunwei Cao, Li Fan, Bo Shi
{"title":"Rejuvenation of La-based metallic glass by controlling different modes of relaxation","authors":"Yifan Yang,&nbsp;Jing Geng,&nbsp;Yunwei Cao,&nbsp;Li Fan,&nbsp;Bo Shi","doi":"10.1016/j.scriptamat.2024.116418","DOIUrl":null,"url":null,"abstract":"<div><div>Metallic glasses (MGs) have multiple dynamic relaxation modes, among which <em>α</em> and <em>β</em> relaxations are two typical modes. The rejuvenation of MGs usually refers to the increase in the total enthalpy of structural relaxation. However, the control mechanism of single-mode relaxation and the contributions of different relaxation modes to the total enthalpy are still unclear. We investigated the effects of stress, temperature and their coupling fields on <em>α</em> and <em>β</em> relaxations through experimental and molecular dynamics (MD) simulations. We found that the temperature field activated more sites for <em>β</em> relaxation, while the prolonged stress leads to the aggregations and connections of a quantity of localized atomic clusters and even activates <em>α</em> relaxation. The coupled field integrates the characteristics of stress and temperature fields and results in a clear splitting of <em>α</em> and <em>β</em> relaxations. Our work provides useful insights into the single-mode regulation of <em>α</em> and <em>β</em> relaxations in MGs.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"256 ","pages":"Article 116418"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004536","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic glasses (MGs) have multiple dynamic relaxation modes, among which α and β relaxations are two typical modes. The rejuvenation of MGs usually refers to the increase in the total enthalpy of structural relaxation. However, the control mechanism of single-mode relaxation and the contributions of different relaxation modes to the total enthalpy are still unclear. We investigated the effects of stress, temperature and their coupling fields on α and β relaxations through experimental and molecular dynamics (MD) simulations. We found that the temperature field activated more sites for β relaxation, while the prolonged stress leads to the aggregations and connections of a quantity of localized atomic clusters and even activates α relaxation. The coupled field integrates the characteristics of stress and temperature fields and results in a clear splitting of α and β relaxations. Our work provides useful insights into the single-mode regulation of α and β relaxations in MGs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过控制不同的弛豫模式使 La 基金属玻璃年轻化
金属玻璃(MGs)具有多种动态弛豫模式,其中α和β弛豫是两种典型模式。金属玻璃的年轻化通常是指结构弛豫总焓的增加。然而,单模弛豫的控制机制以及不同弛豫模式对总焓的贡献仍不清楚。我们通过实验和分子动力学(MD)模拟研究了应力、温度及其耦合场对α和β弛豫的影响。我们发现,温度场激活了更多的β弛豫位点,而长时间的应力则导致大量局部原子团簇的聚集和连接,甚至激活了α弛豫。耦合场综合了应力场和温度场的特征,并导致α弛豫和β弛豫的明显分裂。我们的研究工作为了解 MG 中 α 和 β 弛豫的单模调节提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Insights in improving creep resistance of low-cost 2nd-generation nickel based single crystal superalloys at intermediate temperature Influence of non-rare earth elements on basal stacking fault energy of Mg binary alloys in solid solution Chemical composition dependent atom clustering during natural aging in Al-Mg-Si alloys Machine learning-assisted creep life prediction and empirical formula generation for 9-12% Cr steel New insights into multiple thickening mechanisms of T1 precipitates in Al-Cu-Li alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1