{"title":"Double-Shell Confinement Strategy Enhancing Durability of PtFeTi Intermetallic Catalysts for the Oxygen Reduction Reaction","authors":"Su-Min Chen, Lai-Ke Chen, Na Tian, Sheng-Nan Hu, Shuang-Li Yang, Jun-Fei Shen, Jing-Xiao Tang, De-Yin Wu, Ming-Shu Chen, Zhi-You Zhou, Shi-Gang Sun","doi":"10.1021/acscatal.4c04779","DOIUrl":null,"url":null,"abstract":"The development of Pt-based catalysts with enhanced activity and stability for the oxygen reduction reaction (ORR) is crucial for fuel cell applications. Pt-M (M = Fe, Co, Ni, Cu, etc.) catalysts exposed to prolonged acidic environments in fuel cells suffer from the leaching of transition metals, leading to accelerated catalyst degradation. Here, we present a double-shell confinement strategy to stabilize ORR catalysts by introducing a Ti-rich layer beneath the Pt skin. This design aims to prevent the leaching of Fe atoms, thus protecting the inner PtFeTi intermetallic structure. The resistance of Ti to acid and corrosion allows it to act as a physical protective layer, inhibiting the leaching of Fe and stabilizing the ordered structure of the internal PtFeTi intermetallic. Density functional theory calculations support that the Ti layer can effectively elevate the vacancy formation energy of Fe, thereby enhancing the structural stability. Mass activity (MA) of the double-shell L1<sub>0</sub>-PtFe<sub>0.6</sub>Ti<sub>0.4</sub>/P–C catalyst is up to 1.04 A mg<sub>Pt</sub><sup>–1</sup>. Even after 30,000 potential cycles of accelerated durability test, the MA decreases by only 13.5%. As the fuel cell cathode catalyst, it achieves a peak power density of 1.10 W cm<sup>–2</sup>, and the voltage drop at 0.8 A cm<sup>–2</sup> is only 14 mV after 30,000 square-wave potential cycles. These performance metrics surpass the DOE 2025 target and exceed the stability data of many of the representative catalysts. Moreover, this double-shell confinement strategy is also applicable to PtCo-based and PtNi-based catalysts, demonstrating its broad applicability.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of Pt-based catalysts with enhanced activity and stability for the oxygen reduction reaction (ORR) is crucial for fuel cell applications. Pt-M (M = Fe, Co, Ni, Cu, etc.) catalysts exposed to prolonged acidic environments in fuel cells suffer from the leaching of transition metals, leading to accelerated catalyst degradation. Here, we present a double-shell confinement strategy to stabilize ORR catalysts by introducing a Ti-rich layer beneath the Pt skin. This design aims to prevent the leaching of Fe atoms, thus protecting the inner PtFeTi intermetallic structure. The resistance of Ti to acid and corrosion allows it to act as a physical protective layer, inhibiting the leaching of Fe and stabilizing the ordered structure of the internal PtFeTi intermetallic. Density functional theory calculations support that the Ti layer can effectively elevate the vacancy formation energy of Fe, thereby enhancing the structural stability. Mass activity (MA) of the double-shell L10-PtFe0.6Ti0.4/P–C catalyst is up to 1.04 A mgPt–1. Even after 30,000 potential cycles of accelerated durability test, the MA decreases by only 13.5%. As the fuel cell cathode catalyst, it achieves a peak power density of 1.10 W cm–2, and the voltage drop at 0.8 A cm–2 is only 14 mV after 30,000 square-wave potential cycles. These performance metrics surpass the DOE 2025 target and exceed the stability data of many of the representative catalysts. Moreover, this double-shell confinement strategy is also applicable to PtCo-based and PtNi-based catalysts, demonstrating its broad applicability.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.