Synchronization and optimization of Large Eddy Simulation using an online Ensemble Kalman Filter

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-10-29 DOI:10.1016/j.ijheatfluidflow.2024.109597
L. Villanueva , K. Truffin , M. Meldi
{"title":"Synchronization and optimization of Large Eddy Simulation using an online Ensemble Kalman Filter","authors":"L. Villanueva ,&nbsp;K. Truffin ,&nbsp;M. Meldi","doi":"10.1016/j.ijheatfluidflow.2024.109597","DOIUrl":null,"url":null,"abstract":"<div><div>An online Data Assimilation strategy based on the Ensemble Kalman Filter (EnKF) is used to study the features of parametric optimization and synchronization of the physical state when applied to scale-resolved numerical simulations. To this purpose, the method is combined with Large Eddy Simulation (LES) for the analysis of the turbulent flow in a plane channel, <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>≈</mo><mn>550</mn></mrow></math></span>. The algorithm sequentially combines the LES prediction with high-fidelity, sparse instantaneous data obtained from a Direct Numerical Simulation (DNS). It is shown that the procedure provides an augmented state that exhibits higher accuracy than the LES model and it synchronizes with the time evolution of the high-fidelity DNS data if the hyperparameters governing the EnKF are properly chosen. In addition, the data-driven algorithm is able to improve the accuracy of the subgrid-scale model included in the LES, the Smagorinsky model, via the optimization of a free coefficient. However, while the online EnKF strategy is able to reduce the global error of the LES prediction, a discrepancy with the reference DNS data is still observed because of structural flaws of the subgrid-scale model used.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109597"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003229","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An online Data Assimilation strategy based on the Ensemble Kalman Filter (EnKF) is used to study the features of parametric optimization and synchronization of the physical state when applied to scale-resolved numerical simulations. To this purpose, the method is combined with Large Eddy Simulation (LES) for the analysis of the turbulent flow in a plane channel, Reτ550. The algorithm sequentially combines the LES prediction with high-fidelity, sparse instantaneous data obtained from a Direct Numerical Simulation (DNS). It is shown that the procedure provides an augmented state that exhibits higher accuracy than the LES model and it synchronizes with the time evolution of the high-fidelity DNS data if the hyperparameters governing the EnKF are properly chosen. In addition, the data-driven algorithm is able to improve the accuracy of the subgrid-scale model included in the LES, the Smagorinsky model, via the optimization of a free coefficient. However, while the online EnKF strategy is able to reduce the global error of the LES prediction, a discrepancy with the reference DNS data is still observed because of structural flaws of the subgrid-scale model used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用在线集合卡尔曼滤波器实现大涡流模拟的同步和优化
基于集合卡尔曼滤波器(EnKF)的在线数据同化策略被用于研究应用于尺度分辨数值模拟时参数优化和物理状态同步的特点。为此,该方法与大涡模拟(LES)相结合,用于分析 Reτ≈550 平面通道中的湍流。该算法依次将 LES 预测与直接数值模拟(DNS)获得的高保真稀疏瞬时数据相结合。结果表明,如果适当选择 EnKF 的超参数,该程序提供的增强状态比 LES 模型的精度更高,并且与高保真 DNS 数据的时间演化同步。此外,数据驱动算法还能通过优化自由系数,提高 LES 所包含的子网格尺度模型(即 Smagorinsky 模型)的精度。不过,虽然在线 EnKF 策略能够减少 LES 预测的全局误差,但由于所使用的子网格尺度模型存在结构性缺陷,与 DNS 参考数据之间仍然存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
A MOPSO-based design optimization on molten salt steam generator forced circulation system under off-design conditions Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil Detached eddy simulation of large scale wind turbine wake in offshore environment Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1