A. Elbahri , M. Ragragui , L.B. Drissi , E.H. Saidi
{"title":"Exploring topological phases in superconducting transition metal (Sc, Ti, V)-carbides","authors":"A. Elbahri , M. Ragragui , L.B. Drissi , E.H. Saidi","doi":"10.1016/j.mssp.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of non trivial band topology and superconductivity, resulting in topological superconductivity, igniting a fervent pursuit in the realm of quantum materials. Through density functional theory and maximally localized Wannier functions, we delve into the electronic and topological properties of transition metal carbides <span><math><mi>Λ</mi></math></span>C (with <span><math><mrow><mi>Λ</mi><mo>=</mo></mrow></math></span> Sc, Ti, V). Phonon dispersions guarantee the structural stability of these superconductors. Witness the presence of band inversion within the Brillouin Zone of TiC and VC, contrasting the absence of such band inversion in ScC. In addition, the nonzero <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> topological invariant as well as the occurrence of Dirac cone in the surface spectrum of TiC and VC, unveil their topologically nontrivial character. These transition metal carbides emerge as promising candidates for probing the depths of topological superconductivity and unraveling the associated Majorana bound states.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124008898","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of non trivial band topology and superconductivity, resulting in topological superconductivity, igniting a fervent pursuit in the realm of quantum materials. Through density functional theory and maximally localized Wannier functions, we delve into the electronic and topological properties of transition metal carbides C (with Sc, Ti, V). Phonon dispersions guarantee the structural stability of these superconductors. Witness the presence of band inversion within the Brillouin Zone of TiC and VC, contrasting the absence of such band inversion in ScC. In addition, the nonzero topological invariant as well as the occurrence of Dirac cone in the surface spectrum of TiC and VC, unveil their topologically nontrivial character. These transition metal carbides emerge as promising candidates for probing the depths of topological superconductivity and unraveling the associated Majorana bound states.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.