The development of flexible light-emitting devices with reliable colour tunability, mechanical durability, and high-voltage stability remains a significant challenge due to complex fabrication routes, inefficient thermal management, and limited control over emission characteristics in existing device architectures. In this work, we address these limitations by fabricating the flexible colour-tunable LED devices on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates, namely Device D1 (ITO/ZnO NRs/Ag), Device D2 (ITO/ZnO NRs–CdS/Ag), Device D3 (ITO/ZnO NRs–CuO/Ag), and Device D4 (ITO/ZnO NRs–CdS–CuO/Ag). Vertically aligned ZnO NRs were synthesized using hydrothermal method, while CdS and CuO nanoparticles were prepared via sol–gel processes, enabling a simple, cost-effective, and scalable fabrication strategy. Structural and compositional investigations using FESEM, EDX, AFM, UV–Vis, XRD, FTIR, XPS, and PL techniques confirmed the formation of ZnO–CdS–CuO heterostructures, revealing their crystallinity, chemical structure and bonding, elemental composition, and the presence of various defect states. The current–voltage (I–V) characteristics were performed for different LED devices D1, D2, D3, and D4 and their corresponding turn-on voltages were found to be 3.11 V, 2.45 V, 2.19 V, and 1.87 V, respectively. Multicolour electroluminescence was obtained by selectively combining ZnO, CdS, and CuO semiconductors. Under a forward bias ranging from 4 V to 50 V, the EL spectra displayed distinct emission peaks at ∼381 nm (UV-violet), ∼523 nm (green), ∼613 nm (orange), and ∼671 nm (deep red) corresponding to devices D1, D2, D3, and D4, respectively, spanning a wide UV–visible spectral range. The maximum EL intensities recorded at 35 V were ∼2123 a.u., ∼4359 a.u., ∼6572 a.u., and ∼10900 a.u. for D1, D2, D3, and D4, respectively. Device D4 showed excellent mechanical flexibility and operational stability, retaining stable red emission at bending angles of 30°, 60°, 90°, 120°, and 180° (flat condition) and after 1000 repeated bending cycles at a fixed 30° angle, with no significant change in emission intensity or peak position, and also withstanding high operating voltages up to 35 V without failure. Overall, the demonstrated colour tunability, mechanical flexibility, and high-voltage stability suggest that Device D4 is highly competitive with existing flexible LED technologies and holds strong potential for industrial applications in flexible, colour-tunable LED devices.
扫码关注我们
求助内容:
应助结果提醒方式:
