V-doped transition metal selenides derived from NiFe Prussian blue analogues for efficient oxygen evolution reaction and urea oxidation reaction

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-10-29 DOI:10.1016/j.ijhydene.2024.09.267
Youwei Cheng, Lian Zhu, Yaqiong Gong
{"title":"V-doped transition metal selenides derived from NiFe Prussian blue analogues for efficient oxygen evolution reaction and urea oxidation reaction","authors":"Youwei Cheng,&nbsp;Lian Zhu,&nbsp;Yaqiong Gong","doi":"10.1016/j.ijhydene.2024.09.267","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen production from electrolytic water is considered as an effective strategy for the preparation of clean energy. Anodic oxygen evolution reaction (OER) is a decisive step for electrolytic water process due to its slow kinetics and excessively high energy barrier. In this work, Prussian blue analogue (PBA) was chosen as a sacrificial template to effectively improve the growth environment of NiFe-based electrocatalysts and V-doped NiSe, FeSe, Fe<sub>4</sub><sub>·</sub><sub>4</sub>Ni<sub>17</sub><sub>·</sub><sub>6</sub>Se<sub>16</sub> (FNSe) hybrid electrodes were synthesized using a simple in-situ immersion then multi-step hydrothermal method on a conductive substrate nickel foam (NF). V–NiSe/FeSe/FNSe/NF exhibited a unique nanomicrospheres surface-loaded nanoparticles in a unique morphology. Abundant crystal surface defects and heterojunctions can provide the advantages of a large number of active sites and accelerated electron transfer, which also can lead to the enhancement of catalytic activity, OER (overpotential of 181 mV@10 mA cm<sup>−2</sup>) and UOR (potential of 1.31 V@10 mA cm<sup>−2</sup>). This study provides new ideas for the exploration of transition metal selenide electrocatalysts for electrolytic water.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"92 ","pages":"Pages 1049-1058"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924039764","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen production from electrolytic water is considered as an effective strategy for the preparation of clean energy. Anodic oxygen evolution reaction (OER) is a decisive step for electrolytic water process due to its slow kinetics and excessively high energy barrier. In this work, Prussian blue analogue (PBA) was chosen as a sacrificial template to effectively improve the growth environment of NiFe-based electrocatalysts and V-doped NiSe, FeSe, Fe4·4Ni17·6Se16 (FNSe) hybrid electrodes were synthesized using a simple in-situ immersion then multi-step hydrothermal method on a conductive substrate nickel foam (NF). V–NiSe/FeSe/FNSe/NF exhibited a unique nanomicrospheres surface-loaded nanoparticles in a unique morphology. Abundant crystal surface defects and heterojunctions can provide the advantages of a large number of active sites and accelerated electron transfer, which also can lead to the enhancement of catalytic activity, OER (overpotential of 181 mV@10 mA cm−2) and UOR (potential of 1.31 V@10 mA cm−2). This study provides new ideas for the exploration of transition metal selenide electrocatalysts for electrolytic water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从镍铁合金普鲁士蓝类似物衍生出的掺钒过渡金属硒化物,用于高效氧进化反应和尿素氧化反应
从电解水中制氢被认为是制备清洁能源的有效策略。阳极氧进化反应(OER)是电解水工艺的一个决定性步骤,原因是其动力学过程缓慢且能垒过高。本研究选择普鲁士蓝类似物(PBA)作为牺牲模板,以有效改善镍钴基电催化剂的生长环境,并在导电基底泡沫镍(NF)上采用简单的原位浸泡和多步水热法合成了掺杂 V 的 NiSe、FeSe、Fe4-4Ni17-6Se16(FNSe)混合电极。V-NiSe/FeSe/FNSe/NF呈现出独特的纳米微球表面负载纳米粒子的独特形态。丰富的晶体表面缺陷和异质结可以提供大量的活性位点和加速电子传递的优势,从而提高催化活性、OER(过电位为 181 mV@10 mA cm-2)和 UOR(电位为 1.31 V@10 mA cm-2)。这项研究为探索用于电解水的过渡金属硒化物电催化剂提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Hydrogen storage minimization under industrial flexibility constraints: A techno-economic analysis of off-grid green ammonia production Stochastic optimal coordination of hydrogen-enabled zero-carbon integrated energy systems in buildings Mechanism study of functionalized graphene oxide on proton transport of polymer electrolyte membrane Editorial Board Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1