Amanda L. Barry Schroeder , Osman Radwan , Oscar N. Ruiz , Thusitha S. Gunasekera , Andrea Hoffmann
{"title":"Use of sheep myeloid antimicrobial peptide (SMAP-18) and siderophore Pyochelin for mitigation of aerospace fuel-degrading microbes","authors":"Amanda L. Barry Schroeder , Osman Radwan , Oscar N. Ruiz , Thusitha S. Gunasekera , Andrea Hoffmann","doi":"10.1016/j.ibiod.2024.105943","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainment of aviation fuel infrastructure is expensive and requires frequent testing for hydrocarbon-degrading microbes to assure safeguarding of fuel quality and engineering systems. Microbial contaminants in Jet fuel, including Gram-positive and Gram-negative bacteria, yeast, and filamentous fungi, necessitate early action to prevent biofouling and biocorrosion. Recent studies have identified two novel antimicrobial agents, the sheep myeloid antimicrobial peptide SMAP-18 and the iron chelating siderophore, Pyochelin with potential suitable antimicrobial properties for jet fuel sustainment. This study evaluates the antimicrobial activity of SMAP-18 and Pyochelin in specialized antimicrobial assays including liquid and fuel-culture minimum inhibitory concentration (MIC) testing, small-scale (25 mL) and large-scale (1 L) Jet A fuel microbial consortium cultures. The results show that repetitive dosing of combined SMAP-18 and Pyochelin is bactericidal and able to control bio-contaminant progression of Gram-positive <em>Gordonia</em> sp., and Gram-negative <em>Pseudomonas putida</em> bacteria in jet fuel. Moreover, the synergy observed between SMAP-18 and Pyochelin highlights their complementary mechanisms of action against microbial targets resulting in complete elimination of bacterial growth with a −7.9 log fold reduction through day 24.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524002142","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainment of aviation fuel infrastructure is expensive and requires frequent testing for hydrocarbon-degrading microbes to assure safeguarding of fuel quality and engineering systems. Microbial contaminants in Jet fuel, including Gram-positive and Gram-negative bacteria, yeast, and filamentous fungi, necessitate early action to prevent biofouling and biocorrosion. Recent studies have identified two novel antimicrobial agents, the sheep myeloid antimicrobial peptide SMAP-18 and the iron chelating siderophore, Pyochelin with potential suitable antimicrobial properties for jet fuel sustainment. This study evaluates the antimicrobial activity of SMAP-18 and Pyochelin in specialized antimicrobial assays including liquid and fuel-culture minimum inhibitory concentration (MIC) testing, small-scale (25 mL) and large-scale (1 L) Jet A fuel microbial consortium cultures. The results show that repetitive dosing of combined SMAP-18 and Pyochelin is bactericidal and able to control bio-contaminant progression of Gram-positive Gordonia sp., and Gram-negative Pseudomonas putida bacteria in jet fuel. Moreover, the synergy observed between SMAP-18 and Pyochelin highlights their complementary mechanisms of action against microbial targets resulting in complete elimination of bacterial growth with a −7.9 log fold reduction through day 24.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.