Qingqing Qiu , Jinjin Han , Aqib Mashood Khan , Rui Ma , Bin He , Linglei Kong , Qilin Li , Kai Ding , Wasim Ahmad , Weining Lei
{"title":"Experimental investigation on large-aspect-ratio zirconia ceramic microchannels by waterjet-assisted laser processing","authors":"Qingqing Qiu , Jinjin Han , Aqib Mashood Khan , Rui Ma , Bin He , Linglei Kong , Qilin Li , Kai Ding , Wasim Ahmad , Weining Lei","doi":"10.1016/j.aej.2024.10.080","DOIUrl":null,"url":null,"abstract":"<div><div>Zirconia (ZrO<sub>2</sub>) ceramic has excellent mechanical properties and superior chemical stability, making it widely used in aerospace, microelectronics, biomedicine, and mechanical manufacturing. However, due to its difficult-to-machine characteristics, traditional machining methods struggle with fabricating large-aspect-ratio (LAR) microchannels in zirconia ceramics. This study compares direct laser machining (DLM) and waterjet-assisted laser micromachining (WJALM) in preparing LAR zirconia microchannels, focusing on surface morphology, heat-affected zones, microhardness, chemical and phase composition. Subsequently, parameter experiments of WJALM were carried out to achieve superior machined quality LAR zirconia microchannels by assessing the geometric profile and ablation-area-ratio. Experimental results indicated that WJALM significantly surpasses DLM, achieving a 46 % decrease in areal surface roughness (Sa), WJALM reduced the heat-affected zone depth by approximately 37 % compared to DLM. The WJALM process also enhanced the ablation-area-ratio by 61 %, achieving superior machining quality under optimized conditions of 27 W laser power, 100 mm/s scanning speed, and 8 m/s waterjet velocity.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 456-467"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012456","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zirconia (ZrO2) ceramic has excellent mechanical properties and superior chemical stability, making it widely used in aerospace, microelectronics, biomedicine, and mechanical manufacturing. However, due to its difficult-to-machine characteristics, traditional machining methods struggle with fabricating large-aspect-ratio (LAR) microchannels in zirconia ceramics. This study compares direct laser machining (DLM) and waterjet-assisted laser micromachining (WJALM) in preparing LAR zirconia microchannels, focusing on surface morphology, heat-affected zones, microhardness, chemical and phase composition. Subsequently, parameter experiments of WJALM were carried out to achieve superior machined quality LAR zirconia microchannels by assessing the geometric profile and ablation-area-ratio. Experimental results indicated that WJALM significantly surpasses DLM, achieving a 46 % decrease in areal surface roughness (Sa), WJALM reduced the heat-affected zone depth by approximately 37 % compared to DLM. The WJALM process also enhanced the ablation-area-ratio by 61 %, achieving superior machining quality under optimized conditions of 27 W laser power, 100 mm/s scanning speed, and 8 m/s waterjet velocity.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering