Fei Xiao , Yi Guan , Ting Liu, Yan Zeng, Hengcheng Zhu, Kang Yang
{"title":"Oxalate-upregulated annexin A6 promotes the formation of calcium oxalate kidney stones by exacerbating calcium release-mediated oxidative stress injury in renal tubular epithelial cells and crystal-cell adhesion","authors":"Fei Xiao , Yi Guan , Ting Liu, Yan Zeng, Hengcheng Zhu, Kang Yang","doi":"10.1016/j.abb.2024.110187","DOIUrl":null,"url":null,"abstract":"<div><div>Kidney stones result from abnormal biomineralization, although the mechanism behind their formation remains unclear. Annexin A6 (AnxA6), a calcium-dependent lipid-binding protein, is associated with several mineralization-related diseases, but its role in kidney stones is unknown. This study aimed to explore the role and mechanism of AnxA6 in calcium oxalate (CaOx) kidney stones. An in vitro model in which renal tubular epithelial cells (RTECs) were treated with 1 mmol/L oxalate was established, and AnxA6 protein and mRNA expression were examined. Genetic engineering, drug intervention, and biochemical assays were used to investigate the role of AnxA6. The results revealed that AnxA6 was significantly overexpressed in the CaOx model. AnxA6 knockdown in RTECs reduced oxalate-induced oxidative stress, ROS accumulation, and mitochondrial damage, whereas AnxA6 overexpression exacerbated these effects. Blocking ryanodine receptor-mediated calcium release reversed AnxA6-induced oxidative damage. Additionally, AnxA6 increased oxalate adhesion to RTECs by binding to oxalate. In conclusion, AnxA6 contributes to CaOx kidney stone formation by promoting both oxidative stress via calcium release and crystal-cell adhesion by binding to oxalate. This study offers new insight into CaOx kidney stone formation.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"761 ","pages":"Article 110187"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124003096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Kidney stones result from abnormal biomineralization, although the mechanism behind their formation remains unclear. Annexin A6 (AnxA6), a calcium-dependent lipid-binding protein, is associated with several mineralization-related diseases, but its role in kidney stones is unknown. This study aimed to explore the role and mechanism of AnxA6 in calcium oxalate (CaOx) kidney stones. An in vitro model in which renal tubular epithelial cells (RTECs) were treated with 1 mmol/L oxalate was established, and AnxA6 protein and mRNA expression were examined. Genetic engineering, drug intervention, and biochemical assays were used to investigate the role of AnxA6. The results revealed that AnxA6 was significantly overexpressed in the CaOx model. AnxA6 knockdown in RTECs reduced oxalate-induced oxidative stress, ROS accumulation, and mitochondrial damage, whereas AnxA6 overexpression exacerbated these effects. Blocking ryanodine receptor-mediated calcium release reversed AnxA6-induced oxidative damage. Additionally, AnxA6 increased oxalate adhesion to RTECs by binding to oxalate. In conclusion, AnxA6 contributes to CaOx kidney stone formation by promoting both oxidative stress via calcium release and crystal-cell adhesion by binding to oxalate. This study offers new insight into CaOx kidney stone formation.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.