Pub Date : 2024-11-15DOI: 10.1016/j.abb.2024.110217
Caijun Rao, Haojie Qin, Zhipeng Du
Enoyl coenzyme A hydratase 1 (ECH1) is a secreted protein implicated in numerous metabolic disorders, yet its role in the pathogenesis of atherosclerosis remains unclear. In this study, we found higher serum ECH1 levels in coronary artery disease (CAD) patients and apolipoprotein E (ApoE)-/- mice on a western diet for 12 weeks. In vivo, aorta and aortic sinus histological staining revealed that intraperitoneal injection of recombinant ECH1 reduced aortic lesions, inflammation, and macrophage infiltration in ApoE-/- mice. In vitro, incubating peritoneal macrophages with recombinant ECH1 protein reduced oxidized low-density lipoprotein uptake and increased macrophage migration. Mechanically, we observed that recombinant ECH1 incubation led to a reduction in the protein levels of scavenger receptor cluster of differentiation 36 (CD36) in primary macrophages through the promotion of CD36 protein degradation. Additionally, we found that chloroquine (CQ), a lysosomal inhibitor, mitigated this pro-degradation effect. Taken together, our findings provide unique evidence that ECH1 can attenuate the severity of atherosclerotic plaques, especially improving the stability of plaques, by decreasing macrophage infiltration. ECH1 demonstrates its protective effect by enhancing the lysosome-dependent degradation of CD36, suggesting its potential as a viable target for the prevention and treatment of atherosclerosis.
{"title":"ECH 1 attenuates atherosclerosis by reducing macrophage infiltration and improving plaque stability through CD36 degradation.","authors":"Caijun Rao, Haojie Qin, Zhipeng Du","doi":"10.1016/j.abb.2024.110217","DOIUrl":"https://doi.org/10.1016/j.abb.2024.110217","url":null,"abstract":"<p><p>Enoyl coenzyme A hydratase 1 (ECH1) is a secreted protein implicated in numerous metabolic disorders, yet its role in the pathogenesis of atherosclerosis remains unclear. In this study, we found higher serum ECH1 levels in coronary artery disease (CAD) patients and apolipoprotein E (ApoE)<sup>-/-</sup> mice on a western diet for 12 weeks. In vivo, aorta and aortic sinus histological staining revealed that intraperitoneal injection of recombinant ECH1 reduced aortic lesions, inflammation, and macrophage infiltration in ApoE<sup>-/-</sup> mice. In vitro, incubating peritoneal macrophages with recombinant ECH1 protein reduced oxidized low-density lipoprotein uptake and increased macrophage migration. Mechanically, we observed that recombinant ECH1 incubation led to a reduction in the protein levels of scavenger receptor cluster of differentiation 36 (CD36) in primary macrophages through the promotion of CD36 protein degradation. Additionally, we found that chloroquine (CQ), a lysosomal inhibitor, mitigated this pro-degradation effect. Taken together, our findings provide unique evidence that ECH1 can attenuate the severity of atherosclerotic plaques, especially improving the stability of plaques, by decreasing macrophage infiltration. ECH1 demonstrates its protective effect by enhancing the lysosome-dependent degradation of CD36, suggesting its potential as a viable target for the prevention and treatment of atherosclerosis.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110217"},"PeriodicalIF":3.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.abb.2024.110215
Dong Han , Yun-Biao Chen , Kai Zhao , Hong-Zhou Li , Xing-Yu Chen , Guo-Zheng Zhu , Chen Tu , Jia-Wen Gao , Jing-Shen Zhuang , Zhi-Yong Wu , Zhao-Ming Zhong
Skeletal muscle atrophy, characterized by loss of muscle mass and function, is often linked to systemic inflammation. Tanshinone IIA (Tan IIA), a major active constituent of Salvia miltiorrhiza, has anti-inflammatory and antioxidant properties. However, the effect of Tan IIA on inflammation-induced skeletal muscle atrophy remains unclear. Here, a mice model of the inflammatory muscle atrophy was established using lipopolysaccharide (LPS). Tan IIA intervention significantly increased muscle mass and strength, improved muscle fiber size, and maintained the integrity of skeletal muscle mitochondrial morphology in LPS-treated mice. Myotubes derived from myosatellite cells (MUSCs) were exposed to LPS in vitro. Tan IIA treatment inhibited LPS-induced muscle protein degradation and increased myotube diameter. Notably, Tan IIA attenuated LPS-induced inflammatory response and hyperactive mitophagy both in vivo and in vitro. In addition, Tan IIA treatment effectively diminished oxidative stress, inhibited the accumulation of mitochondrial reactive oxygen species (mtROS), and attenuated mitochondrial fission in LPS-treated myotubes. Reducing mtROS production helped to inhibit LPS-induced excessive mitophagy and myotubes atrophy. Together, our results reveal that Tan IIA can protect against inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction, presenting innovative potential therapeutics for skeletal muscle atrophy.
{"title":"Tanshinone IIA alleviates inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction","authors":"Dong Han , Yun-Biao Chen , Kai Zhao , Hong-Zhou Li , Xing-Yu Chen , Guo-Zheng Zhu , Chen Tu , Jia-Wen Gao , Jing-Shen Zhuang , Zhi-Yong Wu , Zhao-Ming Zhong","doi":"10.1016/j.abb.2024.110215","DOIUrl":"10.1016/j.abb.2024.110215","url":null,"abstract":"<div><div>Skeletal muscle atrophy, characterized by loss of muscle mass and function, is often linked to systemic inflammation. Tanshinone IIA (Tan IIA), a major active constituent of <em>Salvia miltiorrhiza</em>, has anti-inflammatory and antioxidant properties. However, the effect of Tan IIA on inflammation-induced skeletal muscle atrophy remains unclear. Here, a mice model of the inflammatory muscle atrophy was established using lipopolysaccharide (LPS). Tan IIA intervention significantly increased muscle mass and strength, improved muscle fiber size, and maintained the integrity of skeletal muscle mitochondrial morphology in LPS-treated mice. Myotubes derived from myosatellite cells (MUSCs) were exposed to LPS in vitro<em>.</em> Tan IIA treatment inhibited LPS-induced muscle protein degradation and increased myotube diameter. Notably, Tan IIA attenuated LPS-induced inflammatory response and hyperactive mitophagy both in vivo and in vitro. In addition, Tan IIA treatment effectively diminished oxidative stress, inhibited the accumulation of mitochondrial reactive oxygen species (mtROS), and attenuated mitochondrial fission in LPS-treated myotubes. Reducing mtROS production helped to inhibit LPS-induced excessive mitophagy and myotubes atrophy. Together, our results reveal that Tan IIA can protect against inflammation-induced skeletal muscle atrophy by regulating mitochondrial dysfunction, presenting innovative potential therapeutics for skeletal muscle atrophy.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"762 ","pages":"Article 110215"},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1016/j.abb.2024.110216
Yanling Xuan, Jingyi Xu, Hongliang Que, Jianyun Zhu
The increasing incidence of prostate cancer worldwide has spurred research into novel therapeutics for its treatment and prevention. A critical factor contributing to its incidence and development is the presence of prostate cancer stem cells (PCSCs). Targeting PCSCs has become key in enhancing therapeutic and clinical outcomes of prostate cancer. Sulforaphane (SFN), a compound found in cruciferous vegetables, has shown effective antineoplastic activity in prostate cancer. Yet, its mechanisms of action in PCSCs remains unclear. In the present study, tumorsphere formation assay was used to isolate and enrich PCSCs from PC-3 cells. Our results found that SFN effectively reduced the activity of PCSCs, including the ability of tumorsphere formation, the number of CD133 positive cells, and the expression of PCSCs markers. Moreover, the data showed that SFN inhibited PCSCs through downregulating the activation of Wnt/β-catenin and hedgehog signaling pathways in PCSCs. Furthermore, the verification experiments showed that the activators of Wnt/β-catenin (LiCl) and hedgehog (purmorphamine) attenuated the effects of SFN on PCSCs, including the expression of stem cell markers, cell proliferation and apoptosis. Meanwhile, suppression of β-catenin or Smoothened enhanced the effects of SFN on PCSCs. In addition, molecular docking further indicated that SFN inhibited Wnt/β-catenin and hedgehog pathways by directly targeting β-catenin and Smoothened. Taken together, our results demonstrated that SFN targeted PCSCs through Wnt/β-catenin and hedgehog pathways to inhibit stemness and proliferation and induce apoptosis. Findings from this study could provide new insights into SFN as a dietary supplement or adjunct to chemotherapy.
{"title":"Effects of sulforaphane on prostate cancer stem cells-like properties: In vitro and molecular docking studies.","authors":"Yanling Xuan, Jingyi Xu, Hongliang Que, Jianyun Zhu","doi":"10.1016/j.abb.2024.110216","DOIUrl":"https://doi.org/10.1016/j.abb.2024.110216","url":null,"abstract":"<p><p>The increasing incidence of prostate cancer worldwide has spurred research into novel therapeutics for its treatment and prevention. A critical factor contributing to its incidence and development is the presence of prostate cancer stem cells (PCSCs). Targeting PCSCs has become key in enhancing therapeutic and clinical outcomes of prostate cancer. Sulforaphane (SFN), a compound found in cruciferous vegetables, has shown effective antineoplastic activity in prostate cancer. Yet, its mechanisms of action in PCSCs remains unclear. In the present study, tumorsphere formation assay was used to isolate and enrich PCSCs from PC-3 cells. Our results found that SFN effectively reduced the activity of PCSCs, including the ability of tumorsphere formation, the number of CD133 positive cells, and the expression of PCSCs markers. Moreover, the data showed that SFN inhibited PCSCs through downregulating the activation of Wnt/β-catenin and hedgehog signaling pathways in PCSCs. Furthermore, the verification experiments showed that the activators of Wnt/β-catenin (LiCl) and hedgehog (purmorphamine) attenuated the effects of SFN on PCSCs, including the expression of stem cell markers, cell proliferation and apoptosis. Meanwhile, suppression of β-catenin or Smoothened enhanced the effects of SFN on PCSCs. In addition, molecular docking further indicated that SFN inhibited Wnt/β-catenin and hedgehog pathways by directly targeting β-catenin and Smoothened. Taken together, our results demonstrated that SFN targeted PCSCs through Wnt/β-catenin and hedgehog pathways to inhibit stemness and proliferation and induce apoptosis. Findings from this study could provide new insights into SFN as a dietary supplement or adjunct to chemotherapy.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110216"},"PeriodicalIF":3.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1016/j.abb.2024.110202
Jonathan A Semelak, Mariana Gallo, F Luis González Flecha, Solana Di Pino, Thelma A Pertinhez, Ari Zeida, Ivan Gout, Dario A Estrin, Madia Trujillo
Magnesium (Mg2+), the second most abundant intracellular cation, plays a crucial role in cellular functions. In this study, we investigate the interaction between Mg2+ and coenzyme A (CoA), a thiol-containing cofactor central to cellular metabolism also involved in protein modifications. Isothermal titration calorimetry revealed a 1:1 binding stoichiometry between Mg2+ and free CoA under biologically relevant conditions. Association constants of (537 ± 20) M-1 and (312 ± 7) M-1 were determined at 25°C and pH 7.2 and 7.8, respectively, suggesting that a significant fraction of CoA is likely bound to Mg2+ both in the cytosol and in the mitochondrial matrix. Additionally, the process is entropically-driven, and our results support that the origin of the entropy gain is solvent-related. On the other hand, the combination of 1- and 2-dimensional nuclear magnetic resonance spectroscopy with molecular dynamics simulations and unsupervised learning demonstrate a direct coordination between Mg2+ and the phosphate groups of the 4-phosphopantothenate unit and bound to position 5' of the adenosine ring. Interestingly, the phosphate in position 3' only indirectly contributes to Mg2+ coordination. Finally, we discuss how the binding of Mg2+ to CoA perturbates the chemical environment of different CoA atoms, regardless of their apparent proximity to the coordination site, through the modulation of the CoA conformational landscape. This insight holds implications for understanding the impact on both CoA and Mg2+ functions in physiological and pathological processes.
镁(Mg2+)是细胞内含量第二高的阳离子,在细胞功能中发挥着至关重要的作用。在本研究中,我们研究了 Mg2+ 与辅酶 A(CoA)之间的相互作用,辅酶 A 是一种含硫醇的辅助因子,是细胞代谢的核心,也参与蛋白质的修饰。等温滴定量热法显示,在生物相关条件下,Mg2+ 和游离 CoA 之间的结合比例为 1:1。在 25°C、pH 值为 7.2 和 7.8 的条件下测定的结合常数分别为 (537 ± 20) M-1 和 (312 ± 7) M-1,这表明在细胞质和线粒体基质中都可能有相当一部分 CoA 与 Mg2+ 结合。此外,这一过程是由熵驱动的,我们的结果支持熵增的起源与溶剂有关。另一方面,将一维和二维核磁共振光谱与分子动力学模拟和无监督学习相结合,证明了 Mg2+ 与 4-磷泛酸单元的磷酸基团直接配位,并与腺苷环的 5'位结合。有趣的是,3'位置的磷酸基团只是间接促进了 Mg2+ 的配位。最后,我们讨论了 Mg2+ 与 CoA 的结合是如何通过改变 CoA 的构象景观来扰动不同 CoA 原子的化学环境的,而不管它们与配位位点的表面距离有多近。这一见解有助于理解 CoA 和 Mg2+ 的功能在生理和病理过程中的影响。
{"title":"Mg<sup>2+</sup> binding to Coenzyme A.","authors":"Jonathan A Semelak, Mariana Gallo, F Luis González Flecha, Solana Di Pino, Thelma A Pertinhez, Ari Zeida, Ivan Gout, Dario A Estrin, Madia Trujillo","doi":"10.1016/j.abb.2024.110202","DOIUrl":"https://doi.org/10.1016/j.abb.2024.110202","url":null,"abstract":"<p><p>Magnesium (Mg<sup>2+</sup>), the second most abundant intracellular cation, plays a crucial role in cellular functions. In this study, we investigate the interaction between Mg<sup>2+</sup> and coenzyme A (CoA), a thiol-containing cofactor central to cellular metabolism also involved in protein modifications. Isothermal titration calorimetry revealed a 1:1 binding stoichiometry between Mg<sup>2+</sup> and free CoA under biologically relevant conditions. Association constants of (537 ± 20) M<sup>-1</sup> and (312 ± 7) M<sup>-1</sup> were determined at 25°C and pH 7.2 and 7.8, respectively, suggesting that a significant fraction of CoA is likely bound to Mg<sup>2+</sup> both in the cytosol and in the mitochondrial matrix. Additionally, the process is entropically-driven, and our results support that the origin of the entropy gain is solvent-related. On the other hand, the combination of 1- and 2-dimensional nuclear magnetic resonance spectroscopy with molecular dynamics simulations and unsupervised learning demonstrate a direct coordination between Mg<sup>2+</sup> and the phosphate groups of the 4-phosphopantothenate unit and bound to position 5' of the adenosine ring. Interestingly, the phosphate in position 3' only indirectly contributes to Mg<sup>2+</sup> coordination. Finally, we discuss how the binding of Mg<sup>2+</sup> to CoA perturbates the chemical environment of different CoA atoms, regardless of their apparent proximity to the coordination site, through the modulation of the CoA conformational landscape. This insight holds implications for understanding the impact on both CoA and Mg<sup>2+</sup> functions in physiological and pathological processes.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110202"},"PeriodicalIF":3.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.abb.2024.110208
Yudong Sun, Yoichi Osawa, Haoming Zhang
In this communication we reported a bacterial system that over-expressed full-length wild-type (WT) human CYP3A4 in Escherichia coli (E. coli) at a level of 495 nmol/L culture. This level of expression was achieved by cloning the cDNA sequence of CYP3A4 WT to a pLW01-P450 vector and co-expressing it with chaperones GroEL/ES in bacterial C41(DE3) cells. Aided with a C-terminal His5-tag, the expressed CYP3A4 WT was purified to homogeneity with a specific content of 14.3 ± 2.0 nmole P450/mg protein using a single Ni-Penta agarose column. Like the N-terminal modified form (CYP3A4-NF14), CYP3A4 WT binds substrate testosterone with a typical sigmoidal feature at slightly higher affinity. Functional characterization revealed that CYP3A4 WT exhibited lower testosterone 6β-hydroxylase activities than CYP3A4-NF14 in reconstituted phospholipid systems. In addition, it was found that the 6β-hydroxylase activity of CYP3A4 WT was less dependent on excess cytochrome P450 oxidoreductase (POR), compared with CYP3A4-NF14. These results suggest that the N-terminal membrane anchor of CYP3A4 WT enhances its interactions with POR and marginally increases testosterone binding.
{"title":"Bacterial expression, purification, and characterization of human cytochrome P450 3A4 without N-terminal modifications","authors":"Yudong Sun, Yoichi Osawa, Haoming Zhang","doi":"10.1016/j.abb.2024.110208","DOIUrl":"10.1016/j.abb.2024.110208","url":null,"abstract":"<div><div>In this communication we reported a bacterial system that over-expressed full-length wild-type (WT) human CYP3A4 in <em>Escherichia coli</em> (<em>E. coli</em>) at a level of 495 nmol/L culture. This level of expression was achieved by cloning the cDNA sequence of CYP3A4 WT to a pLW01-P450 vector and co-expressing it with chaperones GroEL/ES in bacterial C41(DE3) cells. Aided with a C-terminal His<sub>5</sub>-tag, the expressed CYP3A4 WT was purified to homogeneity with a specific content of 14.3 ± 2.0 nmole P450/mg protein using a single Ni-Penta agarose column. Like the N-terminal modified form (CYP3A4-NF14), CYP3A4 WT binds substrate testosterone with a typical sigmoidal feature at slightly higher affinity. Functional characterization revealed that CYP3A4 WT exhibited lower testosterone 6β-hydroxylase activities than CYP3A4-NF14 in reconstituted phospholipid systems. In addition, it was found that the 6β-hydroxylase activity of CYP3A4 WT was less dependent on excess cytochrome P450 oxidoreductase (POR), compared with CYP3A4-NF14. These results suggest that the N-terminal membrane anchor of CYP3A4 WT enhances its interactions with POR and marginally increases testosterone binding.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"762 ","pages":"Article 110208"},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.abb.2024.110204
Andrea Moreno , Isabel Quereda-Moraleda , Celia Lozano-Vallhonrat , María Buñuel-Escudero , Sabine Botha , Christopher Kupitz , Stella Lisova , Ray Sierra , Valerio Mariani , Pamela Schleissner , Leland B. Gee , Katerina Dörner , Christina Schmidt , Huijong Han , Marco Kloos , Peter Smyth , Joana Valerio , Joachim Schulz , Raphael de Wijn , Diogo V.M. Melo , Milagros Medina
Bacterial ferredoxin(flavodoxin)-NADP+ reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from B. ovis to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe–2S] Fdx ferredoxin, exhibiting a KMFdx in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP+/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP+/H.
{"title":"New insights into the function and molecular mechanisms of Ferredoxin-NADP+ reductase from Brucella ovis","authors":"Andrea Moreno , Isabel Quereda-Moraleda , Celia Lozano-Vallhonrat , María Buñuel-Escudero , Sabine Botha , Christopher Kupitz , Stella Lisova , Ray Sierra , Valerio Mariani , Pamela Schleissner , Leland B. Gee , Katerina Dörner , Christina Schmidt , Huijong Han , Marco Kloos , Peter Smyth , Joana Valerio , Joachim Schulz , Raphael de Wijn , Diogo V.M. Melo , Milagros Medina","doi":"10.1016/j.abb.2024.110204","DOIUrl":"10.1016/j.abb.2024.110204","url":null,"abstract":"<div><div>Bacterial ferredoxin(flavodoxin)-NADP<sup>+</sup> reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from <em>B. ovis</em> to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe–2S] Fdx ferredoxin, exhibiting a <em>K</em><sub>M</sub><sup>Fdx</sup> in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP<sup>+</sup>/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP<sup>+</sup>/H.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"762 ","pages":"Article 110204"},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent studies have highlighted the role of mitophagy in tumorigenesis. This study aimed to investigate the effects of high-intensity interval training (HIIT) on mitophagy in tumor tissues of mice with breast cancer. Twenty-eight female BALB/c mice were randomly assigned to four groups: Healthy Control (CO), Cancer (CA), Exercise (EX), and Cancer + Exercise (CA + EX). Mammary tumors were induced in the CA and CA + EX groups via 4T1 cell injections. Upon confirmation of tumor formation, the EX and CA + EX groups underwent 8 weeks (40 sessions) of HIIT, comprising 4–10 intervals of running at 80–100 % of maximum speed. The expression levels of mitophagy-related proteins, including parkin, PTEN-induced putative kinase 1 (PINK1), NIP3-like protein X (NIX), BCL2 interacting protein-3 (BINP3), microtubule-associated protein light chain 3-I (LC3-I), microtubule-associated protein light chain 3-II (LC3-II), AMP-activated protein kinase (AMPK), Unc-51 like autophagy activating kinase-1 (ULK1), and sirtuin-1 (SIRT1), were measured in breast and tumor tissues. Tumor volume relative to body weight was assessed weekly during the eight-week HIIT intervention. Protein expression of parkin, PINK1, NIX, BINP3, LC3-II, LC3-I, AMPK, ULK1, and SIRT1 was reduced in the breast tissue of the CA group, while HIIT restored expression levels across all measured variables (P < 0.01). Additionally, tumor volume relative to body weight was significantly lower in the CA + EX group compared to the CA group from weeks 3–8 (P < 0.01). These findings suggest that breast cancer suppresses mitophagy, yet HIIT effectively reverses this suppression, potentially reducing tumor burden. HIIT may thus represent a promising therapeutic strategy for managing breast cancer.
最近的研究强调了有丝分裂在肿瘤发生中的作用。本研究旨在探讨高强度间歇训练(HIIT)对乳腺癌小鼠肿瘤组织中有丝分裂的影响。28只雌性BALB/c小鼠被随机分为四组:健康对照组(CO)、癌症组(CA)、运动组(EX)和癌症+运动组(CA + EX)。CA 组和 CA + EX 组通过注射 4T1 细胞诱发乳腺肿瘤。确认肿瘤形成后,EX组和CA + EX组进行为期8周(40次)的HIIT训练,包括4-10次以80-100%的最大速度跑步。有丝分裂相关蛋白的表达水平,包括parkin、PTEN诱导的假定激酶1(PINK1)、NIP3样蛋白X(NIX)、BCL2相互作用蛋白-3(BINP3)、微管相关蛋白轻链3-I(LC3-I)、乳腺和肿瘤组织中的微管相关蛋白轻链 3-II (LC3-II)、AMP 激活蛋白激酶 (AMPK)、Unc-51 类自噬激活激酶-1 (ULK1) 和 sirtuin-1 (SIRT1)。在为期八周的 HIIT 干预期间,每周评估肿瘤体积相对于体重的情况。在 CA 组的乳腺组织中,parkin、PINK1、NIX、BINP3、LC3-II、LC3-I、AMPK、ULK1 和 SIRT1 的蛋白表达量减少,而 HIIT 恢复了所有测量变量的表达水平(P
{"title":"High intensity interval training as a therapy: Mitophagy restoration in breast cancer","authors":"Kayvan Khoramipour , Afsaneh Soltany , Pouria Khosravi , Maryam Hossein Rezaei , Elham Madadizadeh , Celia García-Chico , Sergio Maroto-Izquierdo , Karen Khoramipour","doi":"10.1016/j.abb.2024.110213","DOIUrl":"10.1016/j.abb.2024.110213","url":null,"abstract":"<div><div>Recent studies have highlighted the role of mitophagy in tumorigenesis. This study aimed to investigate the effects of high-intensity interval training (HIIT) on mitophagy in tumor tissues of mice with breast cancer. Twenty-eight female BALB/c mice were randomly assigned to four groups: Healthy Control (CO), Cancer (CA), Exercise (EX), and Cancer + Exercise (CA + EX). Mammary tumors were induced in the CA and CA + EX groups via 4T1 cell injections. Upon confirmation of tumor formation, the EX and CA + EX groups underwent 8 weeks (40 sessions) of HIIT, comprising 4–10 intervals of running at 80–100 % of maximum speed. The expression levels of mitophagy-related proteins, including parkin, PTEN-induced putative kinase 1 (PINK1), NIP3-like protein X (NIX), BCL2 interacting protein-3 (BINP3), microtubule-associated protein light chain 3-I (LC3-I), microtubule-associated protein light chain 3-II (LC3-II), AMP-activated protein kinase (AMPK), Unc-51 like autophagy activating kinase-1 (ULK1), and sirtuin-1 (SIRT1), were measured in breast and tumor tissues. Tumor volume relative to body weight was assessed weekly during the eight-week HIIT intervention. Protein expression of parkin, PINK1, NIX, BINP3, LC3-II, LC3-I, AMPK, ULK1, and SIRT1 was reduced in the breast tissue of the CA group, while HIIT restored expression levels across all measured variables (P < 0.01). Additionally, tumor volume relative to body weight was significantly lower in the CA + EX group compared to the CA group from weeks 3–8 (P < 0.01). These findings suggest that breast cancer suppresses mitophagy, yet HIIT effectively reverses this suppression, potentially reducing tumor burden. HIIT may thus represent a promising therapeutic strategy for managing breast cancer.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"762 ","pages":"Article 110213"},"PeriodicalIF":3.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.abb.2024.110211
Cüneyt Türkeş
{"title":"Corrigendum to \"Aldose reductase with quinolone antibiotics interaction: In vitro and in silico approach of its relationship with diabetic complications\" [Arch. Biochem. Biophys. 761 (2024) 110161].","authors":"Cüneyt Türkeş","doi":"10.1016/j.abb.2024.110211","DOIUrl":"https://doi.org/10.1016/j.abb.2024.110211","url":null,"abstract":"","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110211"},"PeriodicalIF":3.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.abb.2024.110212
Xiuxiu Ma , Fangling Xu , Koukou Yu , Fan Wang , Quan Li , Weifeng Liang , Bing Liu , Bo Zhang , Jiapeng Zhu , Jiao Li
Choline dehydrogenase (CHDH) is a membrane-bound enzyme belonging to the glucose-methanol-choline (GMC) oxidoreductase superfamily, which is characterized by a crucial FAD-binding domain essential for catalytic function. CHDH catalyzes the oxidation of choline to betaine aldehyde, which is further oxidized to betaine, a vital osmoprotectant and methyl donor for cellular physiology and metabolism. However, the detailed catalytic mechanism of CHDH still remains poorly understood. In our investigation, we gained purity E. coli CHDH samples in DDM (n-dodecyl-β-D-maltoside) and SMA (styrene maleic acid) copolymer respectively and examined their structural composition and catalytic activity separately. Our findings demonstrated the effectiveness of SMA, commonly employed for extracting transmembrane proteins and can preserve the natural bio-membrane environment surrounding the enzyme, in extracting peripheral membrane proteins like CHDH here, which lacks transmembrane helices. CHDH exhibited a trimeric conformation in SMA, whereas it existed as monomers in DDM, as determined by our negative staining analysis. Our experiments also revealed that highly pure E. coli CHDH could only oxidize choline to betaine aldehyde but failed to further oxidize betaine aldehyde to betaine as determined by the biochemical and enzymatic reaction kinetic assays. In addition, the enzyme in SMA displayed greater catalytic activity compared to that in DDM. Furthermore, we confirmed the crucial role of His473, which is hypothesized to be a critical site for substrate binding from our structural comparative analysis between CHDH and its highly homologous choline oxidase, in the catalytic activity of the enzyme through gene mutation. Our work also sheds light on CHDH's contribution to cellular osmotic tolerance through gene knockout. This research enhances our better understanding of CHDH within cellular biochemistry and metabolic pathways.
{"title":"Purification and catalysis of choline dehydrogenase from Escherichia coli","authors":"Xiuxiu Ma , Fangling Xu , Koukou Yu , Fan Wang , Quan Li , Weifeng Liang , Bing Liu , Bo Zhang , Jiapeng Zhu , Jiao Li","doi":"10.1016/j.abb.2024.110212","DOIUrl":"10.1016/j.abb.2024.110212","url":null,"abstract":"<div><div>Choline dehydrogenase (CHDH) is a membrane-bound enzyme belonging to the glucose-methanol-choline (GMC) oxidoreductase superfamily, which is characterized by a crucial FAD-binding domain essential for catalytic function. CHDH catalyzes the oxidation of choline to betaine aldehyde, which is further oxidized to betaine, a vital osmoprotectant and methyl donor for cellular physiology and metabolism. However, the detailed catalytic mechanism of CHDH still remains poorly understood. In our investigation, we gained purity <em>E. coli</em> CHDH samples in DDM (n-dodecyl-β-D-maltoside) and SMA (styrene maleic acid) copolymer respectively and examined their structural composition and catalytic activity separately. Our findings demonstrated the effectiveness of SMA, commonly employed for extracting transmembrane proteins and can preserve the natural bio-membrane environment surrounding the enzyme, in extracting peripheral membrane proteins like CHDH here, which lacks transmembrane helices. CHDH exhibited a trimeric conformation in SMA, whereas it existed as monomers in DDM, as determined by our negative staining analysis. Our experiments also revealed that highly pure <em>E. coli</em> CHDH could only oxidize choline to betaine aldehyde but failed to further oxidize betaine aldehyde to betaine as determined by the biochemical and enzymatic reaction kinetic assays. In addition, the enzyme in SMA displayed greater catalytic activity compared to that in DDM. Furthermore, we confirmed the crucial role of His473, which is hypothesized to be a critical site for substrate binding from our structural comparative analysis between CHDH and its highly homologous choline oxidase, in the catalytic activity of the enzyme through gene mutation. Our work also sheds light on CHDH's contribution to cellular osmotic tolerance through gene knockout. This research enhances our better understanding of CHDH within cellular biochemistry and metabolic pathways.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"762 ","pages":"Article 110212"},"PeriodicalIF":3.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.abb.2024.110182
Andrea Angeli , Vivian De Luca , Xiaojing Huang , Daniel L. Winter , Clemente Capasso , Claudiu T. Supuran , William A. Donald
Human carbonic anhydrases (hCAs) have essential roles in respiration, acid-base balance, and fluid secretion, with implications in diseases such as glaucoma, epilepsy, obesity, and cancer. Of the fifteen known hCAs, human CA I (hCA I) is particularly abundant in erythrocytes, playing a critical role in CO2 transport. Despite extensive research on hCA I, the impact of post-translational modifications (PTMs), particularly phosphorylation, on its catalytic activity and inhibitor binding remains poorly understood. Although multiple phosphorylation sites have been identified in hCA I in vivo through high-throughput proteomics studies including at the highly conserved Ser51 residue, the functional consequences of these modifications are not well characterized. We investigated the effects of a phosphomimetic mutation at Ser51 on hCA I, examining its catalytic efficiency and susceptibility to inhibition by sulfonamides and anions. Using a recombinant expression system and a stopped-flow kinetic assay, we characterized the CO2 hydration activity and inhibition profiles of S51E hCA I compared to the wild type enzyme. Our results demonstrate that the S51E mutation increases the catalytic turnover rate (kcat) from 2.0 × 105 s−1 to 2.6 × 105 s−1 but significantly decreases substrate affinity, raising the Michaelis constant (KM) from 4.0 mM to 13.9 mM, reducing overall catalytic efficiency by over 50 %. Inhibition studies with a panel of 41 sulfonamides revealed that the S51E mutation dramatically alters inhibitor sensitivity, particularly for the most effective inhibitors. For example, 15 of the 16 most effective sulfonamide inhibitors for hCA I (with KIs <350 nM) were an average of over 35-fold less effective in inhibiting S51E hCA I than the wild type. The KI of the anticonvulsant zonisamide increased from 31 nM for the wild type hCA I to 4.0 μM. The inhibition profile with a panel of 37 small anions further indicated that the S51E mutant exhibited significantly reduced susceptibility to inhibition by 24 out of 37 tested anions, with some KI values increasing by up to 11,000-fold for inhibitors like hydrogen sulfide. This study underscores the significant impact that phosphorylation may have on hCA I function and inhibition. By characterizing the effects of phosphorylation on the CO2 hydration activity and inhibitor sensitivity of hCA I, these findings represent early steps in developing more selective proteoform-specific inhibitors, which could lead to more effective treatments for diseases involving carbonic anhydrases.
人类碳酸酐酶(hCAs)在呼吸、酸碱平衡和体液分泌中发挥着重要作用,对青光眼、癫痫、肥胖和癌症等疾病也有影响。在已知的 15 种 hCA 中,人 CA I(hCA I)在红细胞中的含量尤其丰富,在二氧化碳转运中发挥着关键作用。尽管对 hCA I 进行了广泛的研究,但人们对其翻译后修饰(PTM),尤其是磷酸化对其催化活性和抑制剂结合的影响仍然知之甚少。虽然通过高通量蛋白质组学研究发现了体内 hCA I 的多个磷酸化位点,包括高度保守的 Ser51 残基,但这些修饰的功能性后果还没有得到很好的描述。我们研究了 Ser51 磷酸化突变对 hCA I 的影响,考察了其催化效率以及对磺胺类药物和阴离子抑制的敏感性。利用重组表达系统和停流动力学测定,我们鉴定了 S51E hCA I 与野生型酶相比的二氧化碳水合活性和抑制曲线。我们的结果表明,S51E 突变将催化周转率(kcat)从 2.0 × 105 s-1 提高到 2.6 × 105 s-1,但却显著降低了底物亲和力,将迈克尔常数(KM)从 4.0 mM 提高到 13.9 mM,使总体催化效率降低了 50%以上。使用 41 种磺胺类药物进行的抑制研究表明,S51E 突变极大地改变了抑制剂的敏感性,尤其是对最有效的抑制剂。例如,在 16 种对 hCA I 最有效的磺胺类抑制剂(KIs 为 350 nM)中,有 15 种抑制 S51E hCA I 的效果比野生型平均低 35 倍以上。抗惊厥药唑尼沙胺的 KI 从野生型 hCA I 的 31 nM 增加到 4.0 μM。由 37 种小阴离子组成的抑制谱进一步表明,在 37 种测试阴离子中,S51E 突变体对其中 24 种阴离子的抑制敏感性显著降低,对于硫化氢等抑制剂,一些 KI 值增加了高达 11,000 倍。这项研究强调了磷酸化可能对 hCA I 的功能和抑制作用产生的重大影响。通过描述磷酸化对 hCA I 的二氧化碳水合活性和抑制剂敏感性的影响,这些发现代表了开发更具选择性的蛋白形式特异性抑制剂的早期步骤,这可能会为涉及碳酸酐酶的疾病带来更有效的治疗方法。
{"title":"Phosphorylation strongly affects the inhibition of human carbonic anhydrase I CO2 hydration activity","authors":"Andrea Angeli , Vivian De Luca , Xiaojing Huang , Daniel L. Winter , Clemente Capasso , Claudiu T. Supuran , William A. Donald","doi":"10.1016/j.abb.2024.110182","DOIUrl":"10.1016/j.abb.2024.110182","url":null,"abstract":"<div><div>Human carbonic anhydrases (hCAs) have essential roles in respiration, acid-base balance, and fluid secretion, with implications in diseases such as glaucoma, epilepsy, obesity, and cancer. Of the fifteen known hCAs, human CA I (hCA I) is particularly abundant in erythrocytes, playing a critical role in CO<sub>2</sub> transport. Despite extensive research on hCA I, the impact of post-translational modifications (PTMs), particularly phosphorylation, on its catalytic activity and inhibitor binding remains poorly understood. Although multiple phosphorylation sites have been identified in hCA I <em>in vivo</em> through high-throughput proteomics studies including at the highly conserved Ser51 residue, the functional consequences of these modifications are not well characterized. We investigated the effects of a phosphomimetic mutation at Ser51 on hCA I, examining its catalytic efficiency and susceptibility to inhibition by sulfonamides and anions. Using a recombinant expression system and a stopped-flow kinetic assay, we characterized the CO<sub>2</sub> hydration activity and inhibition profiles of S51E hCA I compared to the wild type enzyme. Our results demonstrate that the S51E mutation increases the catalytic turnover rate (<em>k</em><sub>cat</sub>) from 2.0 × 10<sup>5</sup> s<sup>−1</sup> to 2.6 × 10<sup>5</sup> s<sup>−1</sup> but significantly decreases substrate affinity, raising the Michaelis constant (<em>K</em><sub>M</sub>) from 4.0 mM to 13.9 mM, reducing overall catalytic efficiency by over 50 %. Inhibition studies with a panel of 41 sulfonamides revealed that the S51E mutation dramatically alters inhibitor sensitivity, particularly for the most effective inhibitors. For example, 15 of the 16 most effective sulfonamide inhibitors for hCA I (with <em>K</em><sub>I</sub>s <350 nM) were an average of over 35-fold less effective in inhibiting S51E hCA I than the wild type. The <em>K</em><sub>I</sub> of the anticonvulsant zonisamide increased from 31 nM for the wild type hCA I to 4.0 μM. The inhibition profile with a panel of 37 small anions further indicated that the S51E mutant exhibited significantly reduced susceptibility to inhibition by 24 out of 37 tested anions, with some <em>K</em><sub>I</sub> values increasing by up to 11,000-fold for inhibitors like hydrogen sulfide. This study underscores the significant impact that phosphorylation may have on hCA I function and inhibition. By characterizing the effects of phosphorylation on the CO<sub>2</sub> hydration activity and inhibitor sensitivity of hCA I, these findings represent early steps in developing more selective proteoform-specific inhibitors, which could lead to more effective treatments for diseases involving carbonic anhydrases.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"761 ","pages":"Article 110182"},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}