Sonochemical preparation of powerful S-scheme Zr(HPO4)2/g-C3N4 heterojunction for photocatalytic degradation of rhodamine B under natural solar radiations

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-10-19 DOI:10.1016/j.jpcs.2024.112392
{"title":"Sonochemical preparation of powerful S-scheme Zr(HPO4)2/g-C3N4 heterojunction for photocatalytic degradation of rhodamine B under natural solar radiations","authors":"","doi":"10.1016/j.jpcs.2024.112392","DOIUrl":null,"url":null,"abstract":"<div><div>An effective Zr(HPO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterojunction was synthesized by sonochemical coupling of Zr(HPO<sub>4</sub>)<sub>2</sub> nanoparticles as an oxidative photocatalyst [E<sub>VB</sub> = +3.0 eV] with g-C<sub>3</sub>N<sub>4</sub> nanosheets as an effective reductive photocatalyst [E<sub>CB</sub> = −1.25 eV] for photocatalytic degradation of rhodamine B dye under natural solar radiation of 1000 W power. The physicochemical properties of the as-synthesized heterojunctions were investigated by X-ray diffraction [XRD], N<sub>2</sub>-adsorption-desorption isotherm, diffuse reflectance spectrum [DRS], photoluminescence [PL], scanning electron microscope [SEM], X-ray photoelectron spectroscope [XPS], and high resolution transmission electron microscope [HRTEM]. The experimental results implied the agglomeration of Zr(HPO<sub>4</sub>)<sub>2</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> sheets which reduced the specific surface area of the solid specimen from 88 to 21 m<sup>2</sup>/g. The significant increase in the photocatalytic degradation rate of RhB dye with introducing Zr(HPO<sub>4</sub>)<sub>2</sub> nanoparticles implied that Zr(HPO<sub>4</sub>)<sub>2</sub> plays a crucial role in reducing the band gap energy and remarkable increasing in the rate of electron-hole separation. The photocatalytic experiments implied that incorporation of 5 wt% Zr(HPO<sub>4</sub>)<sub>2</sub> on g-C<sub>3</sub>N<sub>4</sub> sheets destroyed 98 % of RhB dye during 3 h of light illumination with pseudo-first-order rate of 0.048 min<sup>−1</sup>. The remarkable enhancement in the photocatalytic performance of Zr(HPO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunctions was ascribed to successful generation of an effective S-scheme heterojunction with strong redox power, utilizing of both hydroxyl and superoxide radicals in the degradation process and limiting the electron-hole recombination rate. Based on scavenger experiments and terephthalic acid PL analysis, the S-scheme pathway was chosen as the proposed mechanism for photocatalytic charge transfer. The as-synthesized Zr(HPO<sub>4</sub>)<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction with exceptional redox power is considered a novel candidate for destructing organic pollutants that exist in industrial wastewater.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005274","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An effective Zr(HPO4)2/g-C3N4 S-scheme heterojunction was synthesized by sonochemical coupling of Zr(HPO4)2 nanoparticles as an oxidative photocatalyst [EVB = +3.0 eV] with g-C3N4 nanosheets as an effective reductive photocatalyst [ECB = −1.25 eV] for photocatalytic degradation of rhodamine B dye under natural solar radiation of 1000 W power. The physicochemical properties of the as-synthesized heterojunctions were investigated by X-ray diffraction [XRD], N2-adsorption-desorption isotherm, diffuse reflectance spectrum [DRS], photoluminescence [PL], scanning electron microscope [SEM], X-ray photoelectron spectroscope [XPS], and high resolution transmission electron microscope [HRTEM]. The experimental results implied the agglomeration of Zr(HPO4)2 nanoparticles on g-C3N4 sheets which reduced the specific surface area of the solid specimen from 88 to 21 m2/g. The significant increase in the photocatalytic degradation rate of RhB dye with introducing Zr(HPO4)2 nanoparticles implied that Zr(HPO4)2 plays a crucial role in reducing the band gap energy and remarkable increasing in the rate of electron-hole separation. The photocatalytic experiments implied that incorporation of 5 wt% Zr(HPO4)2 on g-C3N4 sheets destroyed 98 % of RhB dye during 3 h of light illumination with pseudo-first-order rate of 0.048 min−1. The remarkable enhancement in the photocatalytic performance of Zr(HPO4)2/g-C3N4 heterojunctions was ascribed to successful generation of an effective S-scheme heterojunction with strong redox power, utilizing of both hydroxyl and superoxide radicals in the degradation process and limiting the electron-hole recombination rate. Based on scavenger experiments and terephthalic acid PL analysis, the S-scheme pathway was chosen as the proposed mechanism for photocatalytic charge transfer. The as-synthesized Zr(HPO4)2/g-C3N4 heterojunction with exceptional redox power is considered a novel candidate for destructing organic pollutants that exist in industrial wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声化学法制备天然太阳辐射下光催化降解罗丹明 B 的强力 S 型 Zr(HPO4)2/g-C3N4 异质结
通过声化学合成方法,将作为氧化型光催化剂的 Zr(HPO4)2 纳米颗粒[EVB = +3.0 eV]和作为有效还原型光催化剂的 g-C3N4 纳米片[ECB = -1.25 eV]合成了一种有效的 Zr(HPO4)2/g-C3N4 S 型异质结,用于在 1000 W 功率的天然太阳辐射下光催化降解罗丹明 B 染料。通过 X 射线衍射 [XRD]、N2-吸附-解吸等温线、漫反射光谱 [DRS]、光致发光 [PL]、扫描电子显微镜 [SEM]、X 射线光电子能谱 [XPS] 和高分辨率透射电子显微镜 [HRTEM],研究了合成异质结的物理化学性质。实验结果表明,Zr(HPO4)2 纳米粒子在 g-C3N4 片上聚集,使固体试样的比表面积从 88 m2/g 降至 21 m2/g。引入 Zr(HPO4)2 纳米粒子后,RhB 染料的光催化降解率明显提高,这表明 Zr(HPO4)2 在降低带隙能和显著提高电子-空穴分离率方面发挥了重要作用。光催化实验表明,在 g-C3N4 薄片上掺入 5 wt% 的 Zr(HPO4)2 后,在光照 3 小时内可破坏 98% 的 RhB 染料,伪一阶速率为 0.048 min-1。Zr(HPO4)2/g-C3N4异质结光催化性能的显著提高归因于成功生成了具有强大氧化还原能力的有效 S 型异质结,在降解过程中同时利用了羟基和超氧自由基,并限制了电子-空穴重组率。根据清道夫实验和对苯二甲酸聚光分析,选择 S 型途径作为光催化电荷转移的拟议机制。新合成的 Zr(HPO4)2/g-C3N4 异质结具有卓越的氧化还原能力,被认为是破坏工业废水中有机污染物的新型候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1