Radiation-induced photoluminescence enhancement of zinc oxide and zinc oxide- polyvinyl alcohol nanocomposite: A green and controllable approach for tailor-made optoelectronics
{"title":"Radiation-induced photoluminescence enhancement of zinc oxide and zinc oxide- polyvinyl alcohol nanocomposite: A green and controllable approach for tailor-made optoelectronics","authors":"Cosimo Ricci , Elvira Maria Bauer , Isabelle Lampre , Christophe Humbert , Hynd Remita , Marilena Carbone","doi":"10.1016/j.jpcs.2025.112704","DOIUrl":null,"url":null,"abstract":"<div><div>The structural and optical properties of gamma-ray-irradiated ZnO and ZnO-PVA nanocomposites, synthesized via a one-pot method, were investigated. The samples were analyzed before and after irradiation at doses up to 26 kGy using UV–Vis spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and surface frequency generation spectroscopy. X-ray diffraction confirmed the hexagonal wurtzite structure of ZnO, while electron microscopy revealed the embedment of 40 nm ZnO nanoparticles into the PVA matrix. Shifts and decreased ratio of the CH<sub>2</sub>–CH<sub>2</sub> FT-IR vibrations at 1420 cm<sup>−1</sup> and combined CH<sub>2</sub>–CH<sub>2</sub>/CH<sub>2</sub>–O–CH<sub>2</sub> stretching at 1143 cm<sup>−1</sup> indicated not only polymer matrix dislocation resulting from incorporation of ZnO nanoparticles in the PVA matrix but also cross-linking of the polymer chains upon irradiation. Surface frequency generation spectroscopy further confirmed PVA adherence and bonding to ZnO surfaces. Photoluminescence studies revealed significant changes in the energy and intensity of the near-band-edge emission of irradiated ZnO nanoparticles attributed to the annealing of surface defects. UV–Vis spectroscopy of ZnO-PVA showed a dose-dependent absorption increase at 280 nm, suggesting polymer cross-linking. Additionally, the intensity of the blue photoluminescent peak located around 445 nm increased with irradiation dose indicating dose-dependent enhancement of ZnO-PVA bonding. These findings demonstrate that gamma-ray irradiation effectively modifies the optical and surface properties of ZnO-based materials, enhancing their performance for applications in flexible optoelectronics, light-emitting devices, and environmental sensors. The ability to precisely control material properties through irradiation offers new opportunities for developing advanced functional materials with improved performance and sustainability.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"202 ","pages":"Article 112704"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725001556","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural and optical properties of gamma-ray-irradiated ZnO and ZnO-PVA nanocomposites, synthesized via a one-pot method, were investigated. The samples were analyzed before and after irradiation at doses up to 26 kGy using UV–Vis spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and surface frequency generation spectroscopy. X-ray diffraction confirmed the hexagonal wurtzite structure of ZnO, while electron microscopy revealed the embedment of 40 nm ZnO nanoparticles into the PVA matrix. Shifts and decreased ratio of the CH2–CH2 FT-IR vibrations at 1420 cm−1 and combined CH2–CH2/CH2–O–CH2 stretching at 1143 cm−1 indicated not only polymer matrix dislocation resulting from incorporation of ZnO nanoparticles in the PVA matrix but also cross-linking of the polymer chains upon irradiation. Surface frequency generation spectroscopy further confirmed PVA adherence and bonding to ZnO surfaces. Photoluminescence studies revealed significant changes in the energy and intensity of the near-band-edge emission of irradiated ZnO nanoparticles attributed to the annealing of surface defects. UV–Vis spectroscopy of ZnO-PVA showed a dose-dependent absorption increase at 280 nm, suggesting polymer cross-linking. Additionally, the intensity of the blue photoluminescent peak located around 445 nm increased with irradiation dose indicating dose-dependent enhancement of ZnO-PVA bonding. These findings demonstrate that gamma-ray irradiation effectively modifies the optical and surface properties of ZnO-based materials, enhancing their performance for applications in flexible optoelectronics, light-emitting devices, and environmental sensors. The ability to precisely control material properties through irradiation offers new opportunities for developing advanced functional materials with improved performance and sustainability.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.