{"title":"Petroleum system analysis of Fujairah basin, eastern offshore of the United Arab Emirates","authors":"Ahmed Abdelmaksoud , Mohammed Y. Ali","doi":"10.1016/j.marpetgeo.2024.107157","DOIUrl":null,"url":null,"abstract":"<div><div>The Fujairah basin, located on the eastern margin of the United Arab Emirates, forms part of the hinterland basin of the Oman-UAE mountains. Despite its geological significance, the hydrocarbon potential of this basin remains unexplored. This study aims to address this knowledge gap by using 2D seismic reflection data, three exploration wells, geochemical data from one well, a 2D velocity section, and two pseudo-wells. The study began with the interpretation of the seismic profiles and then proceeded to create depth maps for the most significant units. We used Rock-Eval pyrolysis plots to identify the primary source rocks and to classify their kerogen types. The seismic interpretation formed a basis for the 1D and 2D basin modeling techniques that are used to determine the petroleum system of the basin. Our results identify the Pliocene, Miocene, and Eocene sequences as potential source rocks in the basin with TOC values less than 1 wt% and low expulsion efficiencies. The Pliocene and Miocene source rocks are mainly type-II kerogen, whereas most Eocene samples are characterized as type-III kerogen. The Pliocene and Miocene source rocks are immature in the basin. The Eocene is mature depending on the burial within the sub-basins. The Eocene started expelling hydrocarbons during the Burdigalian, which was linked to the collision of the Arabian and Central Iran plates along the Zagros suture zone. Structural and stratigraphic traps may have entrapped the generated hydrocarbons. The three drilled wells in the basin lack good reservoir rocks. However, low-velocity anomalies and bright spots indicate possible hydrocarbon accumulations in the basin.</div></div>","PeriodicalId":18189,"journal":{"name":"Marine and Petroleum Geology","volume":"170 ","pages":"Article 107157"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264817224004690","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Fujairah basin, located on the eastern margin of the United Arab Emirates, forms part of the hinterland basin of the Oman-UAE mountains. Despite its geological significance, the hydrocarbon potential of this basin remains unexplored. This study aims to address this knowledge gap by using 2D seismic reflection data, three exploration wells, geochemical data from one well, a 2D velocity section, and two pseudo-wells. The study began with the interpretation of the seismic profiles and then proceeded to create depth maps for the most significant units. We used Rock-Eval pyrolysis plots to identify the primary source rocks and to classify their kerogen types. The seismic interpretation formed a basis for the 1D and 2D basin modeling techniques that are used to determine the petroleum system of the basin. Our results identify the Pliocene, Miocene, and Eocene sequences as potential source rocks in the basin with TOC values less than 1 wt% and low expulsion efficiencies. The Pliocene and Miocene source rocks are mainly type-II kerogen, whereas most Eocene samples are characterized as type-III kerogen. The Pliocene and Miocene source rocks are immature in the basin. The Eocene is mature depending on the burial within the sub-basins. The Eocene started expelling hydrocarbons during the Burdigalian, which was linked to the collision of the Arabian and Central Iran plates along the Zagros suture zone. Structural and stratigraphic traps may have entrapped the generated hydrocarbons. The three drilled wells in the basin lack good reservoir rocks. However, low-velocity anomalies and bright spots indicate possible hydrocarbon accumulations in the basin.
期刊介绍:
Marine and Petroleum Geology is the pre-eminent international forum for the exchange of multidisciplinary concepts, interpretations and techniques for all concerned with marine and petroleum geology in industry, government and academia. Rapid bimonthly publication allows early communications of papers or short communications to the geoscience community.
Marine and Petroleum Geology is essential reading for geologists, geophysicists and explorationists in industry, government and academia working in the following areas: marine geology; basin analysis and evaluation; organic geochemistry; reserve/resource estimation; seismic stratigraphy; thermal models of basic evolution; sedimentary geology; continental margins; geophysical interpretation; structural geology/tectonics; formation evaluation techniques; well logging.