Vandanaben Bhupatray Sompura , Rizwan Y. Ghumara , Naresh RanajiKiri , Tarunkumar N. Akhaja , Tushar Ravjibhai Sutariya , Samat Rama Ram , Jignesh Priyakant Raval , Keyur kumar A. Kamani
{"title":"Novel, low-cost, and environmentally friendly pathway for synthesizing tigecycline","authors":"Vandanaben Bhupatray Sompura , Rizwan Y. Ghumara , Naresh RanajiKiri , Tarunkumar N. Akhaja , Tushar Ravjibhai Sutariya , Samat Rama Ram , Jignesh Priyakant Raval , Keyur kumar A. Kamani","doi":"10.1016/j.jics.2024.101441","DOIUrl":null,"url":null,"abstract":"<div><div>The development of tigecycline, effective against tetracycline-resistant bacteria, began with the synthesis of its precursor, 9-amino minocycline, derived from minocycline hydrochloride through nitration. Water served as the primary solvent, ensuring cost-effective processing. In the final step, conversion to tigecycline required only tert-butylglycinoyl chloride hydrochloride as a reactant. This method shows great potential for the sustainable production of tigecycline, making it more accessible for large-scale use as an antibiotic. Throughout the synthesis, various techniques such as IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and mass spectrometry were used to characterize each product at different stages.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101441"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224003212","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of tigecycline, effective against tetracycline-resistant bacteria, began with the synthesis of its precursor, 9-amino minocycline, derived from minocycline hydrochloride through nitration. Water served as the primary solvent, ensuring cost-effective processing. In the final step, conversion to tigecycline required only tert-butylglycinoyl chloride hydrochloride as a reactant. This method shows great potential for the sustainable production of tigecycline, making it more accessible for large-scale use as an antibiotic. Throughout the synthesis, various techniques such as IR, 1H NMR, 13C NMR, and mass spectrometry were used to characterize each product at different stages.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.