Nika Strem , Devendra Singh Dhami , Benedikt Schmidt , Benjamin Klöpper , Kristian Kersting
{"title":"APT: Alarm Prediction Transformer","authors":"Nika Strem , Devendra Singh Dhami , Benedikt Schmidt , Benjamin Klöpper , Kristian Kersting","doi":"10.1016/j.eswa.2024.125521","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed control systems (DCS) are essential to operate complex industrial processes. A major part of a DCS is the alarm system, which helps plant operators to keep the processes stable and safe. Alarms are defined as threshold values on individual signals taking into account minimum reaction time of the human operator. In reality, however, alarms are often noisy and overwhelming, and thus can be easily overlooked by the operators. Early alarm prediction can give the operator more time to react and introduce corrective actions to avoid downtime and negative impact on human safety and the environment. In this context, we introduce Alarm Prediction Transformer (APT), a multimodal Transformer-based machine learning model for early alarm prediction based on the combination of recent events and signal data. Specifically, we propose two novel fusion strategies and three methods of label encoding with various levels of granularity. Given a window of several minutes of event logs and signal data, our model predicts whether an alarm is going to be triggered after a few minutes and, if yes, it also predicts its location. Our experiments on two novel real industrial plant data sets and a simulated data set show that the model is capable of predicting alarms with the given horizon and that our proposed fusion technique combining inputs from different modalities, i. e. events and signals, yields more accurate results than any of the modalities alone or conventional fusion techniques.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424023881","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed control systems (DCS) are essential to operate complex industrial processes. A major part of a DCS is the alarm system, which helps plant operators to keep the processes stable and safe. Alarms are defined as threshold values on individual signals taking into account minimum reaction time of the human operator. In reality, however, alarms are often noisy and overwhelming, and thus can be easily overlooked by the operators. Early alarm prediction can give the operator more time to react and introduce corrective actions to avoid downtime and negative impact on human safety and the environment. In this context, we introduce Alarm Prediction Transformer (APT), a multimodal Transformer-based machine learning model for early alarm prediction based on the combination of recent events and signal data. Specifically, we propose two novel fusion strategies and three methods of label encoding with various levels of granularity. Given a window of several minutes of event logs and signal data, our model predicts whether an alarm is going to be triggered after a few minutes and, if yes, it also predicts its location. Our experiments on two novel real industrial plant data sets and a simulated data set show that the model is capable of predicting alarms with the given horizon and that our proposed fusion technique combining inputs from different modalities, i. e. events and signals, yields more accurate results than any of the modalities alone or conventional fusion techniques.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.