Biologically logic-gated Trojan-horse strategy for personalized triple-negative breast cancer precise therapy by selective ferroptosis and STING pathway provoking
Shuai Guo , Tianwang Guan , Yushen Ke , Yuping Lin, Rundong Tai, Jujian Ye, Zhilin Deng, Shaohui Deng, Caiwen Ou
{"title":"Biologically logic-gated Trojan-horse strategy for personalized triple-negative breast cancer precise therapy by selective ferroptosis and STING pathway provoking","authors":"Shuai Guo , Tianwang Guan , Yushen Ke , Yuping Lin, Rundong Tai, Jujian Ye, Zhilin Deng, Shaohui Deng, Caiwen Ou","doi":"10.1016/j.biomaterials.2024.122905","DOIUrl":null,"url":null,"abstract":"<div><div>Amidst the therapeutic quandaries associated with triple-negative breast cancer (TNBC), an aggressive malignancy distinguished by its immune resistance and limited treatment avenues, the urgent need for innovative solutions is underscored. To conquer the dilemma, we present a groundbreaking approach that ingeniously employs DNA-fragments-containing exosomes (DNA-Exo) and the concept of “biological logic-gates” to achieve precise homing and controlled selective activation of ferroptosis and stimulator interferon genes (STING) pathways. Leveraging insights from our previous research, a nano-Trojan-horse, Fe<sup>0</sup>@HMON@DNA-Exo, is engineered <em>via in situ</em> Fe<sup>0</sup> synthesis within the glutathione (GSH)-responsiveness degradable hollow mesoporous organosilica nanoparticles (HMON) and subsequently enveloped in DNA-Exo derived from 7-ethyl-10-hydroxycamptothecin (SN38)-treated 4T1 cells. Emphasizing the precision of our approach, the DNA-Exo ensures specific ‘homing’ to TNBC cells, rendering a targeted delivery mechanism. Concurrently, the concept of “biological logic-gates” is employed to dictate a meticulous and selective activation of STING in antigen-presenting cells (APCs) under OR logic-gating with robust immune response and Fe<sup>0</sup>-based ferroptosis in TNBC cells under AND logic-gating with reactive oxygen species (ROS) storm generation. In essence, our strategy exhibits great potential in transforming the “immunologically cold” nature of TNBC, enabling precise control over cellular responses, illuminating a promising therapeutic paradigm that is comprehensive and productive in pursuing precision oncology and paving the way for personalized TNBC therapies.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122905"},"PeriodicalIF":12.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004393","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amidst the therapeutic quandaries associated with triple-negative breast cancer (TNBC), an aggressive malignancy distinguished by its immune resistance and limited treatment avenues, the urgent need for innovative solutions is underscored. To conquer the dilemma, we present a groundbreaking approach that ingeniously employs DNA-fragments-containing exosomes (DNA-Exo) and the concept of “biological logic-gates” to achieve precise homing and controlled selective activation of ferroptosis and stimulator interferon genes (STING) pathways. Leveraging insights from our previous research, a nano-Trojan-horse, Fe0@HMON@DNA-Exo, is engineered via in situ Fe0 synthesis within the glutathione (GSH)-responsiveness degradable hollow mesoporous organosilica nanoparticles (HMON) and subsequently enveloped in DNA-Exo derived from 7-ethyl-10-hydroxycamptothecin (SN38)-treated 4T1 cells. Emphasizing the precision of our approach, the DNA-Exo ensures specific ‘homing’ to TNBC cells, rendering a targeted delivery mechanism. Concurrently, the concept of “biological logic-gates” is employed to dictate a meticulous and selective activation of STING in antigen-presenting cells (APCs) under OR logic-gating with robust immune response and Fe0-based ferroptosis in TNBC cells under AND logic-gating with reactive oxygen species (ROS) storm generation. In essence, our strategy exhibits great potential in transforming the “immunologically cold” nature of TNBC, enabling precise control over cellular responses, illuminating a promising therapeutic paradigm that is comprehensive and productive in pursuing precision oncology and paving the way for personalized TNBC therapies.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.