Electrocatalytic CO2 reduction to HCO2H by protic NHC-Ir complexes

IF 2.1 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Journal of Organometallic Chemistry Pub Date : 2024-10-19 DOI:10.1016/j.jorganchem.2024.123422
Saswati Ray , Sanajit Kumar Mandal , Joyanta Choudhury
{"title":"Electrocatalytic CO2 reduction to HCO2H by protic NHC-Ir complexes","authors":"Saswati Ray ,&nbsp;Sanajit Kumar Mandal ,&nbsp;Joyanta Choudhury","doi":"10.1016/j.jorganchem.2024.123422","DOIUrl":null,"url":null,"abstract":"<div><div>In electrochemical CO<sub>2</sub>-conversion strategies, various transition metal-based molecular electrocatalysts are employed to reduce CO<sub>2</sub> into products like CO and HCO<sub>2</sub>H, with H<sub>2</sub> as a competitive side product. However, achieving selectivity towards HCO<sub>2</sub>H remains challenging, and suitable catalysts for the same are limited. Herein we report a normal and an abnormal protic-NHC-based Cp*Ir(III)-half sandwich complexes for catalytic CO<sub>2</sub> electroreduction in an aqueous acetonitrile solvent. Both the catalysts predominantly produced HCO<sub>2</sub>H as the CO<sub>2</sub>-reduced product at an applied potential of –2.66 V vs Fc<sup>+</sup>/Fc with 5 % H<sub>2</sub>O as the proton source; however, the normal protic-NHC-bound complex achieved a Faradic efficiency (FE) of 86±4 %, while the complex with the abnormal protic-NHC ligand furnished FE up to 72±4 %. The protic proton of the protic NHC ligand in these complexes was proposed to participate in a proton relay process, facilitating generation of the crucial Ir–H intermediate, which reacts with CO<sub>2</sub> to produce HCO<sub>2</sub>H through stabilization of the Ir–OCHO intermediate.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1022 ","pages":"Article 123422"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24004170","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In electrochemical CO2-conversion strategies, various transition metal-based molecular electrocatalysts are employed to reduce CO2 into products like CO and HCO2H, with H2 as a competitive side product. However, achieving selectivity towards HCO2H remains challenging, and suitable catalysts for the same are limited. Herein we report a normal and an abnormal protic-NHC-based Cp*Ir(III)-half sandwich complexes for catalytic CO2 electroreduction in an aqueous acetonitrile solvent. Both the catalysts predominantly produced HCO2H as the CO2-reduced product at an applied potential of –2.66 V vs Fc+/Fc with 5 % H2O as the proton source; however, the normal protic-NHC-bound complex achieved a Faradic efficiency (FE) of 86±4 %, while the complex with the abnormal protic-NHC ligand furnished FE up to 72±4 %. The protic proton of the protic NHC ligand in these complexes was proposed to participate in a proton relay process, facilitating generation of the crucial Ir–H intermediate, which reacts with CO2 to produce HCO2H through stabilization of the Ir–OCHO intermediate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原生 NHC-Ir 复合物电催化 CO2 还原成 HCO2H
在电化学二氧化碳转化策略中,采用了各种基于过渡金属的分子电催化剂,将二氧化碳还原成 CO 和 HCO2H 等产物,并将 H2 作为竞争性副产品。然而,实现对 HCO2H 的选择性仍然具有挑战性,而且适用的催化剂也很有限。在此,我们报告了一种基于正常和异常原生 NHC 的 Cp*Ir(III)-half sandwich 复合物,用于在乙腈水溶液中催化 CO2 电还原。在以 5% H2O 为质子源、对 Fc+/Fc 的施加电位为 -2.66 V 时,这两种催化剂都主要产生 HCO2H 作为 CO2 还原产物;然而,正常的原核-NHC 结合络合物的法拉第效率 (FE) 为 86±4%,而带有异常原核-NHC 配体的络合物的法拉第效率 (FE) 则高达 72±4%。据推测,这些复合物中原生 NHC 配体的原生质子参与了质子中继过程,促进了关键的 Ir-H 中间体的生成,通过稳定 Ir-OCHO 中间体,Ir-H 中间体与 CO2 反应生成 HCO2H。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organometallic Chemistry
Journal of Organometallic Chemistry 化学-无机化学与核化学
CiteScore
4.40
自引率
8.70%
发文量
221
审稿时长
36 days
期刊介绍: The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds. Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome. The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.
期刊最新文献
Recent progress in synthesis, reactivity, and biological activities of selenopheno[2,3-c/3,2-c] pyrazole heterocycles DFT study on the mechanism and structural aspects of iron(II)-catalyzed condensation of epichlorohydrin and CO2 2,3-diferrocenyl-(1-triphenylphosphoranylidene)ketene: Synthesis and interactions with O, C, N, S, Se nucleophiles, characterization and X-ray diffraction Recyclable and reusable Pd(acac)2/BrettPhos/PEG-1000 system for the Suzuki-Miyaura coupling of nitroarenes Recent advances in homogeneous catalysts for the acceptorless dehydrogenation of alcohols to ketones and aldehydes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1