{"title":"C3-symmetric triarylboron building blocks: Synthesis, structures, and photophysical properties","authors":"Vishal Singh, Ramaswamy Murugavel","doi":"10.1016/j.jorganchem.2024.123412","DOIUrl":null,"url":null,"abstract":"<div><div>Synthesis of C<sub>3</sub>-symmetric triarylboranes, tris(4-bromo-2,6-dimethylphenyl)-borane <strong>(1)</strong>, N,N',N''-(boranetriyltris(3,5-diisopropyl-3′,5′-dimethyl-[1,1′-biphenyl]-4′,4-diyl))tris(1,1-diphenylmethanimine) (<strong>2</strong>), N,N',N''-(boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4′,4-diyl))tris-(1,1-diphenylmethanimine) (<strong>3</strong>), 4′,4′'',4′''''-boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-carbaldehyde) (<strong>4),</strong> 4,4′,4′'-boranetriyltris(3,5-dimethylaniline) (<strong>5</strong>), 4′,4′'',4′''''-borane-triyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-carbonitrile) (<strong>6</strong>), 4′,4′'',4′''''-boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-amine) (<strong>7</strong>), and 4,4′,4′'-boranetriyltris(3,5-dimethylbenzaldehyde) (<strong>8</strong>) has been accomplished using well-known synthetic methodologies. These new potential building blocks have been characterized by various spectroscopic and analytical techniques and their photophysical properties have been examined. It is observed that photophysical properties of these compounds are enhanced with π conjugation expansions along the branches when donor moieties such as -NH<sub>2</sub> groups are present at the para-position of the aryl rings. The highest quantum yield of 0.293 is observed for 4′,4′'',4′''''-boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-amine) (<strong>7</strong>). Interestingly, red-shifted fluorescence spectra follow the same trend as absorption spectra. The fluorescence lifetime increases with the number of donor moieties. The present findings demonstrate the possible use of these C<sub>3</sub>-symmetric boron-containing building blocks in developing new polymeric materials with improved photophysical properties for various applications.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1022 ","pages":"Article 123412"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24004078","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesis of C3-symmetric triarylboranes, tris(4-bromo-2,6-dimethylphenyl)-borane (1), N,N',N''-(boranetriyltris(3,5-diisopropyl-3′,5′-dimethyl-[1,1′-biphenyl]-4′,4-diyl))tris(1,1-diphenylmethanimine) (2), N,N',N''-(boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4′,4-diyl))tris-(1,1-diphenylmethanimine) (3), 4′,4′'',4′''''-boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-carbaldehyde) (4), 4,4′,4′'-boranetriyltris(3,5-dimethylaniline) (5), 4′,4′'',4′''''-borane-triyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-carbonitrile) (6), 4′,4′'',4′''''-boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-amine) (7), and 4,4′,4′'-boranetriyltris(3,5-dimethylbenzaldehyde) (8) has been accomplished using well-known synthetic methodologies. These new potential building blocks have been characterized by various spectroscopic and analytical techniques and their photophysical properties have been examined. It is observed that photophysical properties of these compounds are enhanced with π conjugation expansions along the branches when donor moieties such as -NH2 groups are present at the para-position of the aryl rings. The highest quantum yield of 0.293 is observed for 4′,4′'',4′''''-boranetriyltris(3′,5′-dimethyl-[1,1′-biphenyl]-4-amine) (7). Interestingly, red-shifted fluorescence spectra follow the same trend as absorption spectra. The fluorescence lifetime increases with the number of donor moieties. The present findings demonstrate the possible use of these C3-symmetric boron-containing building blocks in developing new polymeric materials with improved photophysical properties for various applications.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.