{"title":"A review of new emerging biosensors based on bacteria-imprinted polymers towards pathogenic bacteria: Promising new tools for selective detection","authors":"Chou-Yi Hsu , Jasur Alimdjanovich Rizaev , Harikumar Pallathadka , Sofiene Mansouri , Dmitry Olegovich Bokov , Snehlata Sharma , Gulshan Rathore , Pranchal Rajput , Yasser Fakri Mustafa , Munther Kadhim Abosaoda","doi":"10.1016/j.microc.2024.111918","DOIUrl":null,"url":null,"abstract":"<div><div>The spread of pathogenic bacteria in the environment, as a significant global issue, causes a substantial threat to human health, damaging economic development. Indeed, the development of sensitive and selective sensing approaches for detection of pathogenic bacteria is essential to prevent and treating infections. In this regard, biosensors as efficient analytical methods can play an important role. Importantly, exploiting of novel strategy can improve the performance of these biosensing platforms. Among different types, molecularly imprinted polymers (MIPs), as artificial receptors, that are developed to selective and sensitive biosensors. The distinct complementary cavities in these synthetic polymers contribute to their unique characteristics, as they are specifically tailored to their respective templates. Notably, bacteria-imprinted polymers (BIPs), as an important and novel member of MIPs, attracted considerable attention for different bacteria detection due to many cavities complementary to their bacteria. These novel probes can efficiently isolate various bacteria from wide range of samples such as food, water, or biological fluids due to the high affinity and selectivity. In this study, the application of BIPs in the structure of biosensors, as active area of research in the field of different bacteria detection, was reviewed for detection of <em>Staphylococcus aureus</em> (<em>S. aureus</em>), <em>Salmonella</em>, <em>Vibrio parahaemolyticus</em> (<em>(V. parahaemolyticus</em>) and <em>Escherichia coli</em> (<em>E. coli</em>). In addition, direct strategies and advance methods for bacteria imprinting completely reviewed. The deficiency and future perspective of BIPs sensors were discussed.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111918"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24020307","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of pathogenic bacteria in the environment, as a significant global issue, causes a substantial threat to human health, damaging economic development. Indeed, the development of sensitive and selective sensing approaches for detection of pathogenic bacteria is essential to prevent and treating infections. In this regard, biosensors as efficient analytical methods can play an important role. Importantly, exploiting of novel strategy can improve the performance of these biosensing platforms. Among different types, molecularly imprinted polymers (MIPs), as artificial receptors, that are developed to selective and sensitive biosensors. The distinct complementary cavities in these synthetic polymers contribute to their unique characteristics, as they are specifically tailored to their respective templates. Notably, bacteria-imprinted polymers (BIPs), as an important and novel member of MIPs, attracted considerable attention for different bacteria detection due to many cavities complementary to their bacteria. These novel probes can efficiently isolate various bacteria from wide range of samples such as food, water, or biological fluids due to the high affinity and selectivity. In this study, the application of BIPs in the structure of biosensors, as active area of research in the field of different bacteria detection, was reviewed for detection of Staphylococcus aureus (S. aureus), Salmonella, Vibrio parahaemolyticus ((V. parahaemolyticus) and Escherichia coli (E. coli). In addition, direct strategies and advance methods for bacteria imprinting completely reviewed. The deficiency and future perspective of BIPs sensors were discussed.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.