Machine learning private equity returns

Christian Tausch, Marcus Pietz
{"title":"Machine learning private equity returns","authors":"Christian Tausch,&nbsp;Marcus Pietz","doi":"10.1016/j.jfds.2024.100141","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we use two machine learning techniques to learn the aggregated return time series of complete private capital fund segments. First, we propose Stochastic Discount Factor (SDF) model combination to determine the public factor exposure of private equity. Here, we describe our theoretical motivation to favor model combination over model selection. This entails that we apply simple coefficient averaging to obtain multivariate SDF models that mimic the factor exposure of all major private capital fund types. As a second step, we suggest componentwise <em>L</em><sub>2</sub> boosting to estimate the error-term time series associated with our factor models. The simple addition of the public factor model returns and the error terms then yields the total return time series. These return time series can be applied for proper integrated public and private risk management or benchmarking.</div></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"10 ","pages":"Article 100141"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918824000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use two machine learning techniques to learn the aggregated return time series of complete private capital fund segments. First, we propose Stochastic Discount Factor (SDF) model combination to determine the public factor exposure of private equity. Here, we describe our theoretical motivation to favor model combination over model selection. This entails that we apply simple coefficient averaging to obtain multivariate SDF models that mimic the factor exposure of all major private capital fund types. As a second step, we suggest componentwise L2 boosting to estimate the error-term time series associated with our factor models. The simple addition of the public factor model returns and the error terms then yields the total return time series. These return time series can be applied for proper integrated public and private risk management or benchmarking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习私募股权投资回报
在本文中,我们使用两种机器学习技术来学习完整的私募基金细分市场的总回报时间序列。首先,我们提出了随机贴现因子(SDF)模型组合来确定私募基金的公共因子风险敞口。在此,我们将介绍我们倾向于模型组合而非模型选择的理论动机。这就要求我们运用简单的系数平均法获得多变量 SDF 模型,以模拟所有主要私募基金类型的因子风险敞口。第二步,我们建议采用分量二级提升法来估计与因子模型相关的误差期时间序列。将公共因子模型收益和误差项简单相加,就能得到总收益时间序列。这些收益时间序列可用于适当的公共和私人综合风险管理或基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Interpretable machine learning model for predicting activist investment targets Technical patterns and news sentiment in stock markets Do commodity prices matter for global systemic risk? Evidence from ML variable selection Tail-driven portfolios: Unveiling financial contagion and enhancing risk management Machine learning private equity returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1