Symbolic Modeling for financial asset pricing

Xiangwu Zuo, Anxiao (Andrew) Jiang
{"title":"Symbolic Modeling for financial asset pricing","authors":"Xiangwu Zuo,&nbsp;Anxiao (Andrew) Jiang","doi":"10.1016/j.jfds.2025.100150","DOIUrl":null,"url":null,"abstract":"<div><div>Symbolic Regression is a machine learning technique that discovers an unknown function from its samples. Compared to conventional regression techniques (e.g., linear regression, polynomial regression, <em>etc.</em>), Symbolic Regression does not limit the discovered function to specific forms (e.g., linear functions, polynomials, <em>etc.</em>). Its recent developments are enabling its application to various fields, including both scientific study and engineering research. However, in spite of its flexibility, Symbolic Regression still faces one limitation: given datasets from different systems in the same domain, Symbolic Regression needs to find a distinct function for each dataset, instead of finding a more general yet succinct function that can fit all the datasets through the adjustments of its coefficients. The latter approach, which is termed “Symbolic Modeling” in this work, can be seen as a generalization of Symbolic Regression and has important applications to both academia and industry. This work elucidates Symbolic Modeling and unveils a cutting-edge algorithm, deriving its principles from deep learning and genetic programming. This algorithm is implemented into an application, showcasing its practical utility in the field of financial asset pricing, an integral facet of finance that concentrates on asset valuation. It is shown that Symbolic Modeling compares favorably to existing asset pricing models in multiple aspects.</div></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"11 ","pages":"Article 100150"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918825000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic Regression is a machine learning technique that discovers an unknown function from its samples. Compared to conventional regression techniques (e.g., linear regression, polynomial regression, etc.), Symbolic Regression does not limit the discovered function to specific forms (e.g., linear functions, polynomials, etc.). Its recent developments are enabling its application to various fields, including both scientific study and engineering research. However, in spite of its flexibility, Symbolic Regression still faces one limitation: given datasets from different systems in the same domain, Symbolic Regression needs to find a distinct function for each dataset, instead of finding a more general yet succinct function that can fit all the datasets through the adjustments of its coefficients. The latter approach, which is termed “Symbolic Modeling” in this work, can be seen as a generalization of Symbolic Regression and has important applications to both academia and industry. This work elucidates Symbolic Modeling and unveils a cutting-edge algorithm, deriving its principles from deep learning and genetic programming. This algorithm is implemented into an application, showcasing its practical utility in the field of financial asset pricing, an integral facet of finance that concentrates on asset valuation. It is shown that Symbolic Modeling compares favorably to existing asset pricing models in multiple aspects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Unsupervised generation of tradable topic indices through textual analysis Optimal rebalancing strategies reduce market variability Symbolic Modeling for financial asset pricing Interpretable machine learning model for predicting activist investment targets Technical patterns and news sentiment in stock markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1