Woo-Ju Kim , Yoonbin Kim , Reza Ovissipour , Nitin Nitin
{"title":"Plant-based biomaterials as scaffolds for cellular agriculture","authors":"Woo-Ju Kim , Yoonbin Kim , Reza Ovissipour , Nitin Nitin","doi":"10.1016/j.fufo.2024.100468","DOIUrl":null,"url":null,"abstract":"<div><div>Edible scaffolds are the essential components for cultivated meat. This research aimed to evaluate the performance of food-grade polysaccharides (pectin and alginate) and proteins (soy protein isolate (SPI) and pea protein isolate (PPI)) as scaffolds for cultivated meat production. A myoblast model cell line (C2C12) and an embryonic-derived fish cell line (ZEM2S) were selected as model cell lines. Rheological analysis revealed that the selected gels were viscoelastic solids with shear thinning behavior. The storage modulus (G') and loss modulus (G'') of pectin and PPI were greater than 1000 Pa and 100 Pa. The pectin gels exhibit better structure recovery compared to other biopolymer gels. The texture properties were similar to those of commercial meat analogues. Furthermore, the pectin gels were stable in water. In general, the cytocompatibility of the biomaterial gels was similar for the tested cell lines, except for ZEM2S when exposed to protein gels. Based on the results of mechanical properties and cytocompatibilities of gels, a 3D printed structure with pectin gel was generated. 3D-printed scaffolds promoted the proliferation of C2C12 cells during 5 days of incubation. These findings highlight the potential of plant biomaterials and 3D printing to develop scaffolds for the production of cultivated meat.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100468"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524001679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Edible scaffolds are the essential components for cultivated meat. This research aimed to evaluate the performance of food-grade polysaccharides (pectin and alginate) and proteins (soy protein isolate (SPI) and pea protein isolate (PPI)) as scaffolds for cultivated meat production. A myoblast model cell line (C2C12) and an embryonic-derived fish cell line (ZEM2S) were selected as model cell lines. Rheological analysis revealed that the selected gels were viscoelastic solids with shear thinning behavior. The storage modulus (G') and loss modulus (G'') of pectin and PPI were greater than 1000 Pa and 100 Pa. The pectin gels exhibit better structure recovery compared to other biopolymer gels. The texture properties were similar to those of commercial meat analogues. Furthermore, the pectin gels were stable in water. In general, the cytocompatibility of the biomaterial gels was similar for the tested cell lines, except for ZEM2S when exposed to protein gels. Based on the results of mechanical properties and cytocompatibilities of gels, a 3D printed structure with pectin gel was generated. 3D-printed scaffolds promoted the proliferation of C2C12 cells during 5 days of incubation. These findings highlight the potential of plant biomaterials and 3D printing to develop scaffolds for the production of cultivated meat.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP