Optoelectronic properties of GaP:Ti photovoltaic devices

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-10-17 DOI:10.1016/j.mtsust.2024.101008
J. Olea , J. Gonzalo , J. Siegel , A.F. Braña , G. Godoy-Pérez , R. Benítez-Fernández , D. Caudevilla , S. Algaidy , F. Pérez-Zenteno , S. Duarte-Cano , A. del Prado , E. García-Hemme , R. García-Hernansanz , D. Pastor , E. San-Andrés , I. Mártil
{"title":"Optoelectronic properties of GaP:Ti photovoltaic devices","authors":"J. Olea ,&nbsp;J. Gonzalo ,&nbsp;J. Siegel ,&nbsp;A.F. Braña ,&nbsp;G. Godoy-Pérez ,&nbsp;R. Benítez-Fernández ,&nbsp;D. Caudevilla ,&nbsp;S. Algaidy ,&nbsp;F. Pérez-Zenteno ,&nbsp;S. Duarte-Cano ,&nbsp;A. del Prado ,&nbsp;E. García-Hemme ,&nbsp;R. García-Hernansanz ,&nbsp;D. Pastor ,&nbsp;E. San-Andrés ,&nbsp;I. Mártil","doi":"10.1016/j.mtsust.2024.101008","DOIUrl":null,"url":null,"abstract":"<div><div>Supersaturated GaP is of interest for the photovoltaic field since optical transitions at energies below the bandgap (2.26 eV) could enhance the overall device efficiency up to theoretically 60%. We have previously demonstrated that Ti supersaturated GaP can be obtained by means of ion implantation and pulsed-laser melting with high structural quality and measured its below-bandgap photoconductivity. In this work we report the first results of a GaP:Ti based photovoltaic device. We have fabricated and measured photovoltaic devices with a GaP:Ti absorber layer showing enhanced external quantum efficiency at wavelengths above 550 nm. Also, we have measured the absorption coefficient (around 10<sup>4</sup> cm<sup>−1</sup>) and refractive index of this absorber layer. Finally, current-voltage curves in darkness were measured and analyzed using a two-diodes model, showing improvable characteristics. Ideas to enhance the properties of the devices are suggested.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101008"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003440","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Supersaturated GaP is of interest for the photovoltaic field since optical transitions at energies below the bandgap (2.26 eV) could enhance the overall device efficiency up to theoretically 60%. We have previously demonstrated that Ti supersaturated GaP can be obtained by means of ion implantation and pulsed-laser melting with high structural quality and measured its below-bandgap photoconductivity. In this work we report the first results of a GaP:Ti based photovoltaic device. We have fabricated and measured photovoltaic devices with a GaP:Ti absorber layer showing enhanced external quantum efficiency at wavelengths above 550 nm. Also, we have measured the absorption coefficient (around 104 cm−1) and refractive index of this absorber layer. Finally, current-voltage curves in darkness were measured and analyzed using a two-diodes model, showing improvable characteristics. Ideas to enhance the properties of the devices are suggested.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaP:Ti 光电器件的光电特性
由于能量低于带隙(2.26 eV)的光跃迁可将整体设备效率提高到理论上的 60%,因此过饱和 GaP 在光伏领域备受关注。我们之前已经证明,可以通过离子注入和脉冲激光熔化的方法获得钛过饱和 GaP,而且结构质量很高,并测量了其低于带隙的光导率。在这项工作中,我们首次报告了基于 GaP:Ti 的光伏器件的研究结果。我们制作并测量了带有 GaP:Ti 吸收层的光伏器件,结果表明,在波长超过 550 纳米时,该器件的外部量子效率有所提高。此外,我们还测量了该吸收层的吸收系数(约 104 cm-1)和折射率。最后,我们使用双二极管模型测量并分析了黑暗环境下的电流-电压曲线,结果表明其特性得到了改善。此外,还提出了增强设备特性的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Corrigendum to ‘Optimization of transition metal sulfide through sputtered transition metal nitride thin film for hybrid supercapacitors’ [25, 100680] Zinc oxide and its engineered derivative nanomaterials: Insight into energy, environmental, medical, agricultural, and food applications Recent insights on Z-scheme and S-scheme photocatalysts for nitrogen conversion to ammonia: A review Study on corrosion resistance and microstructure of modified sediment geopolymer materials Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1