Tribological performances of epoxy resin reinforced by a novel biomass intelligent "pool-channel" oil storage and delivery system

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL Tribology International Pub Date : 2024-10-28 DOI:10.1016/j.triboint.2024.110355
{"title":"Tribological performances of epoxy resin reinforced by a novel biomass intelligent \"pool-channel\" oil storage and delivery system","authors":"","doi":"10.1016/j.triboint.2024.110355","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, a novel strategy of oil storage and transportation in polytetrafluoroethylene/porous polylactic acid/polydopamine/rapeseed pollen (diatomaceous earth)/paraffin wax ternary skeleton (PTFE/PPLA/PDA/POL(DE)PW) was developed to enhance the tribological performances of epoxy resin (EP). Importantly, a new biomass “pool-channel” structure was established using PPLA as the oil channel and DE or POL as the oil pool. The addition of biomass “pool-channel” structure to EP matrices can result bifunctional EP composites with self-lubricating and self-healing properties. In addition, experimental and theoretical calculations have shown the successful construction of intelligent \"pool channels\" with high oil content, high oil retention, release/reabsorption of lubricants. Compared with pure EP, the friction coefficient and specific wear rate of the novel epoxy composite were reduced by up to 85.46 % and 94.25 %, respectively.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011071","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a novel strategy of oil storage and transportation in polytetrafluoroethylene/porous polylactic acid/polydopamine/rapeseed pollen (diatomaceous earth)/paraffin wax ternary skeleton (PTFE/PPLA/PDA/POL(DE)PW) was developed to enhance the tribological performances of epoxy resin (EP). Importantly, a new biomass “pool-channel” structure was established using PPLA as the oil channel and DE or POL as the oil pool. The addition of biomass “pool-channel” structure to EP matrices can result bifunctional EP composites with self-lubricating and self-healing properties. In addition, experimental and theoretical calculations have shown the successful construction of intelligent "pool channels" with high oil content, high oil retention, release/reabsorption of lubricants. Compared with pure EP, the friction coefficient and specific wear rate of the novel epoxy composite were reduced by up to 85.46 % and 94.25 %, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型生物质智能 "池道 "储油和输油系统增强环氧树脂的摩擦学性能
在此,我们开发了一种在聚四氟乙烯/多孔聚乳酸/多聚多巴胺/油菜花粉(硅藻土)/石蜡三元骨架(PTFE/PPLA/PDA/POL(DE)PW)中储油和输油的新策略,以提高环氧树脂(EP)的摩擦学性能。重要的是,以 PPLA 作为油通道,以 DE 或 POL 作为油池,建立了一种新的生物质 "池-通道 "结构。将生物质 "池-通道 "结构添加到 EP 基质中,可产生具有自润滑和自修复性能的双功能 EP 复合材料。此外,实验和理论计算表明,高含油量、高保油性、释放/再吸收润滑剂的智能 "池道 "结构已成功构建。与纯 EP 相比,新型环氧树脂复合材料的摩擦系数和比磨损率分别降低了 85.46 % 和 94.25 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
期刊最新文献
Enhanced interlayer adhesion and regulated tribological behaviors of 3D printed poly(ether ether ketone) by annealing Effect of substrate stiffness on interfacial Schallamach wave of flexible film/substrate bilayer structure: Cohesive contact insight Evolution of high vacuum tribological performance of lead-doped hydrogenated diamond-like carbon coatings after atomic oxygen and ultraviolet irradiation Tribological performances of epoxy resin reinforced by a novel biomass intelligent "pool-channel" oil storage and delivery system Molecular dynamics simulation and machine learning prediction of tribological properties of graphene solid-liquid two-phase lubrication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1