{"title":"Silicon photonic polarization beam splitter assisted by polarization-Selective metamaterials with 600 nm bandwidth","authors":"","doi":"10.1016/j.optlastec.2024.111985","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon photonic polarization beam splitter (PBS) is a crucial component for on-chip polarization management. PBSs typically function based on wavelength-dependent mechanisms such as evanescent coupling and modal interference. As a result, constructing a PBS with a broad bandwidth, low insertion loss, and high extinction ratio remains a significant challenge. This paper presents a novel method for achieving a PBS that is almost independent of the wavelength, which involves engineering the modal birefringence of subwavelength grating waveguides and utilizing reciprocal mode transitions. An input taper is embedded in polarization-selective metamaterials (PSMs), which are made up of two sets of subwavelength gratings arranged in different directions. As the width of the input taper decreases, the waveguide mode is no longer supported and transits into a single-mode-like (SML) component guided in the SWG waveguide. By exploiting the principle that a mode will preferentially evolve into the mode with the closest effective refractive index, polarization beam splitting is achieved during the transition of waveguide modes into SML components guided in SWGs with different arrangement directions. Results show that the proposed PBS achieves a high extinction ratio of more than 23 dB throughout a bandwidth of 600 nm (1.2–1.8 μm) for both polarizations. For TE/TM polarization, the bandwidth to achieve an insertion loss of lower than 0.41/1 dB is as large as 600 nm (1.2–1.8 μm)/530 nm (1.23–1.76 μm). As far as we know, this is the PBS with the most superior broadband performance proposed till now.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014439","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon photonic polarization beam splitter (PBS) is a crucial component for on-chip polarization management. PBSs typically function based on wavelength-dependent mechanisms such as evanescent coupling and modal interference. As a result, constructing a PBS with a broad bandwidth, low insertion loss, and high extinction ratio remains a significant challenge. This paper presents a novel method for achieving a PBS that is almost independent of the wavelength, which involves engineering the modal birefringence of subwavelength grating waveguides and utilizing reciprocal mode transitions. An input taper is embedded in polarization-selective metamaterials (PSMs), which are made up of two sets of subwavelength gratings arranged in different directions. As the width of the input taper decreases, the waveguide mode is no longer supported and transits into a single-mode-like (SML) component guided in the SWG waveguide. By exploiting the principle that a mode will preferentially evolve into the mode with the closest effective refractive index, polarization beam splitting is achieved during the transition of waveguide modes into SML components guided in SWGs with different arrangement directions. Results show that the proposed PBS achieves a high extinction ratio of more than 23 dB throughout a bandwidth of 600 nm (1.2–1.8 μm) for both polarizations. For TE/TM polarization, the bandwidth to achieve an insertion loss of lower than 0.41/1 dB is as large as 600 nm (1.2–1.8 μm)/530 nm (1.23–1.76 μm). As far as we know, this is the PBS with the most superior broadband performance proposed till now.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems