DNA Sensing With Printed Circuit Board Electrode: Non-Faradaic Electrochemical Impedance Spectroscopy Analysis

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-10-15 DOI:10.1109/LSENS.2024.3481057
Priyanka Roy;Avani Kulkarni;Siddharth Tallur
{"title":"DNA Sensing With Printed Circuit Board Electrode: Non-Faradaic Electrochemical Impedance Spectroscopy Analysis","authors":"Priyanka Roy;Avani Kulkarni;Siddharth Tallur","doi":"10.1109/LSENS.2024.3481057","DOIUrl":null,"url":null,"abstract":"Printed circuit boards (PCBs) provide a versatile platform for developing point-of-use electrochemical biosensors. Low-cost surface finish, such as electroless nickel immersion gold, on such PCBs offers several advantages over traditional electrochemical sensor substrates, such as cost-effectiveness, scalability, miniaturization, and ease of fabrication. For DNA sensing application of these electrodes, it is necessary to understand the optimal parameter space for error-free operation. In this work, we aim to characterize the double-layer capacitance (DLC) formed at electrode/electrolyte interface for DNA sensing using PCB electrodes. This study investigates the electrochemical behavior of the DLC formed over PCB electrodes in phosphate-buffered saline (PBS) electrolyte using non-Faradaic electrochemical impedance spectroscopy. By varying the electrolyte concentrations (\n<inline-formula><tex-math>$\\text{1 mM}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\text{5 mM}$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$\\text{10 mM}$</tex-math></inline-formula>\n) and the ac excitation potential amplitudes (5-100 mV), we analyze DLC formation at the electrode/electrolyte interface. The study examines ionic arrangement transitions at the open circuit potential (OCP), and their impact on DLC retention and distortion. \n<inline-formula><tex-math>$\\text{5 mM}$</tex-math></inline-formula>\n PBS electrolyte solution is found to best assist DLC formation as it has the highest capacitive contribution in impedance. In addition, the DLC formation is further examined with dilutions of \n<inline-formula><tex-math>$\\text{20 bp}$</tex-math></inline-formula>\n DNA fragments prepared in 1 and \n<inline-formula><tex-math>$\\text{5 mM}$</tex-math></inline-formula>\n PBS, ranging from \n<inline-formula><tex-math>$\\text{1 ng}/\\upmu \\text{l}$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$\\text{20 ng}/\\upmu \\text{l}$</tex-math></inline-formula>\n DNA. The dilutions prepared using \n<inline-formula><tex-math>$\\text{5 mM}$</tex-math></inline-formula>\n PBS show sequential change in constant phase element (CPE) parameters of the impedance up to \n<inline-formula><tex-math>$\\text{10 ng}/\\upmu \\text{l}$</tex-math></inline-formula>\n with OCP found to be maintained at a constant value of \n<inline-formula><tex-math>$\\text{40 mV}$</tex-math></inline-formula>\n. Higher DNA concentrations show decrease in OCP values, and thus this study presents optimal parameter space for DLC formation with proper ionic arrangement for accurate DNA detection using PCB electrodes.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10716691/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Printed circuit boards (PCBs) provide a versatile platform for developing point-of-use electrochemical biosensors. Low-cost surface finish, such as electroless nickel immersion gold, on such PCBs offers several advantages over traditional electrochemical sensor substrates, such as cost-effectiveness, scalability, miniaturization, and ease of fabrication. For DNA sensing application of these electrodes, it is necessary to understand the optimal parameter space for error-free operation. In this work, we aim to characterize the double-layer capacitance (DLC) formed at electrode/electrolyte interface for DNA sensing using PCB electrodes. This study investigates the electrochemical behavior of the DLC formed over PCB electrodes in phosphate-buffered saline (PBS) electrolyte using non-Faradaic electrochemical impedance spectroscopy. By varying the electrolyte concentrations ( $\text{1 mM}$ , $\text{5 mM}$ , and $\text{10 mM}$ ) and the ac excitation potential amplitudes (5-100 mV), we analyze DLC formation at the electrode/electrolyte interface. The study examines ionic arrangement transitions at the open circuit potential (OCP), and their impact on DLC retention and distortion. $\text{5 mM}$ PBS electrolyte solution is found to best assist DLC formation as it has the highest capacitive contribution in impedance. In addition, the DLC formation is further examined with dilutions of $\text{20 bp}$ DNA fragments prepared in 1 and $\text{5 mM}$ PBS, ranging from $\text{1 ng}/\upmu \text{l}$ to $\text{20 ng}/\upmu \text{l}$ DNA. The dilutions prepared using $\text{5 mM}$ PBS show sequential change in constant phase element (CPE) parameters of the impedance up to $\text{10 ng}/\upmu \text{l}$ with OCP found to be maintained at a constant value of $\text{40 mV}$ . Higher DNA concentrations show decrease in OCP values, and thus this study presents optimal parameter space for DLC formation with proper ionic arrangement for accurate DNA detection using PCB electrodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用印刷电路板电极传感 DNA:非法拉第电化学阻抗光谱分析
印刷电路板(PCB)为开发使用点电化学生物传感器提供了一个多功能平台。与传统的电化学传感器基底相比,这种印刷电路板上的低成本表面处理(如无电解镍浸金)具有成本效益、可扩展性、微型化和易于制造等优势。对于这些电极的 DNA 传感应用,有必要了解无差错运行的最佳参数空间。在这项工作中,我们的目标是鉴定在电极/电解质界面上形成的双层电容(DLC),以便使用 PCB 电极进行 DNA 传感。本研究采用非法拉第电化学阻抗光谱法研究了 PCB 电极在磷酸盐缓冲盐水(PBS)电解液中形成的 DLC 的电化学行为。通过改变电解质浓度($\text{1 mM}$、$\text{5 mM}$和$\text{10 mM}$)和交流激发电势振幅(5-100 mV),我们分析了电极/电解质界面上 DLC 的形成。研究考察了开路电位 (OCP) 下的离子排列转变及其对 DLC 保留和变形的影响。研究发现,PBS 电解质溶液最有助于 DLC 的形成,因为它在阻抗方面的电容贡献最大。此外,在 1 和 $\text{5 mM}$ PBS 溶液中制备的 $\text{20 bp}$ DNA 片段稀释液(从 $\text{1 ng}/\upmu \text{l}$ 到 $\text{20 ng}/\upmu \text{l}$ DNA)对 DLC 的形成进行了进一步检验。使用 $\text{5 mM}$ PBS 制备的稀释液显示了阻抗恒定相元素(CPE)参数的连续变化,最高可达 $\text{10 ng}/\upmu \text{l}$,OCP 保持在 $\text{40 mV}$ 的恒定值。DNA 浓度越高,OCP 值越低,因此本研究提出了 DLC 形成的最佳参数空间,它具有适当的离子排列,可使用 PCB 电极准确检测 DNA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1