Janayita Biswa Sarma, Saurov Mahanta, Bhaben Tanti
{"title":"Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass","authors":"Janayita Biswa Sarma, Saurov Mahanta, Bhaben Tanti","doi":"10.1007/s00203-024-04172-4","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world’s energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon–neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04172-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world’s energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon–neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.