Qinfan Wang, Alistar Ottochian, Michele Turelli, Andrea Pucci, Ilaria Ciofini, Carlo Adamo
{"title":"Understanding and simulating mechanochromism in dye-dispersed polymer blends: from atomistic insights to macroscopic properties","authors":"Qinfan Wang, Alistar Ottochian, Michele Turelli, Andrea Pucci, Ilaria Ciofini, Carlo Adamo","doi":"10.1007/s00894-024-06174-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>In this work, we propose a computational protocol enabling the simulation of mechanochromic responses in dye-dispersed polymer blends. The main objective is the modeling of the molecular-level structural changes responsible for the modulation of the photophysical properties that lead to the mechanochromic phenomenon. In this demonstrative study, we focus on predicting the changes in optical absorption displayed by a model system consisting of a dimer of a tetraphenylethylene derivative dispersed in a polyethylene matrix. The blend is subjected to an external stimulus that causes a modulation of the polymer matrix density that translates, in turn, into the emergence of specific mechanical constraints on the optically active dimers. The accurate description of this phenomenon requires the reliable sampling of the dimer configurations induced by the interaction with the matrix under stress. These molecular geometries are associated with modified electronic structures that confer novel absorption responses to the dispersed dyes.</p><h3>Methods</h3><p>In the present contribution, the sampling of these structures is achieved through classical molecular dynamics (MD) simulations including a model element to apply an anisotropic mechanical force. This element allows the microscopic modeling of the chains’ and dyes’ structural rearrangements under stress. After the sampling, we compare the results of two approaches for the prediction of the optical response: (i) the calculation of a mean response from a statistical average over quantum chemical calculations on the sampled MD structures and (ii) a prediction via a more expensive hybrid scheme allowing the relaxation of the sampled molecular geometries in the presence of the matrix constraints.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06174-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
In this work, we propose a computational protocol enabling the simulation of mechanochromic responses in dye-dispersed polymer blends. The main objective is the modeling of the molecular-level structural changes responsible for the modulation of the photophysical properties that lead to the mechanochromic phenomenon. In this demonstrative study, we focus on predicting the changes in optical absorption displayed by a model system consisting of a dimer of a tetraphenylethylene derivative dispersed in a polyethylene matrix. The blend is subjected to an external stimulus that causes a modulation of the polymer matrix density that translates, in turn, into the emergence of specific mechanical constraints on the optically active dimers. The accurate description of this phenomenon requires the reliable sampling of the dimer configurations induced by the interaction with the matrix under stress. These molecular geometries are associated with modified electronic structures that confer novel absorption responses to the dispersed dyes.
Methods
In the present contribution, the sampling of these structures is achieved through classical molecular dynamics (MD) simulations including a model element to apply an anisotropic mechanical force. This element allows the microscopic modeling of the chains’ and dyes’ structural rearrangements under stress. After the sampling, we compare the results of two approaches for the prediction of the optical response: (i) the calculation of a mean response from a statistical average over quantum chemical calculations on the sampled MD structures and (ii) a prediction via a more expensive hybrid scheme allowing the relaxation of the sampled molecular geometries in the presence of the matrix constraints.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.