A soft switching non-isolated bidirectional DC–DC converter with improved voltage conversion ratio and minimum number of switches

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS IET Renewable Power Generation Pub Date : 2024-10-15 DOI:10.1049/rpg2.13114
Nasrin Asadi Madiseh, Ehsan Adib
{"title":"A soft switching non-isolated bidirectional DC–DC converter with improved voltage conversion ratio and minimum number of switches","authors":"Nasrin Asadi Madiseh,&nbsp;Ehsan Adib","doi":"10.1049/rpg2.13114","DOIUrl":null,"url":null,"abstract":"<p>A soft switching non-isolated bidirectional DC–DC converter with an improved voltage conversion ratio without any additional auxiliary switch is presented in this paper. In the proposed converter, improved step-up/step-down gain conversion is achieved by employing the coupled inductors method. Also, the auxiliary circuit provides soft switching conditions for all the semiconductor elements, regardless of the power flow direction and without any extra voltage stress. The other switch helps provide soft switching conditions for the main switch. Moreover, the switch used for providing soft switching conditions operates as a synchronous rectifier as well. The additional circuit added to attain soft switching is composed of an inductor, coupled with the converter's main inductor, and two auxiliary diodes. The auxiliary diodes benefit from zero-current-switching conditions. Fully soft switching conditions for all semiconductor devices, removing the reverse recovery problem, and a low number of components have led to mitigating switching losses and improving efficiency. Detailed operating principles and a theoretical analysis of the proposed converter are presented. Also, the experimental results of a 220 W prototype circuit are provided to confirm the validity of the proposed topology.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2694-2705"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13114","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13114","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A soft switching non-isolated bidirectional DC–DC converter with an improved voltage conversion ratio without any additional auxiliary switch is presented in this paper. In the proposed converter, improved step-up/step-down gain conversion is achieved by employing the coupled inductors method. Also, the auxiliary circuit provides soft switching conditions for all the semiconductor elements, regardless of the power flow direction and without any extra voltage stress. The other switch helps provide soft switching conditions for the main switch. Moreover, the switch used for providing soft switching conditions operates as a synchronous rectifier as well. The additional circuit added to attain soft switching is composed of an inductor, coupled with the converter's main inductor, and two auxiliary diodes. The auxiliary diodes benefit from zero-current-switching conditions. Fully soft switching conditions for all semiconductor devices, removing the reverse recovery problem, and a low number of components have led to mitigating switching losses and improving efficiency. Detailed operating principles and a theoretical analysis of the proposed converter are presented. Also, the experimental results of a 220 W prototype circuit are provided to confirm the validity of the proposed topology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种软开关非隔离双向 DC-DC 转换器,可提高电压转换率并减少开关数量
本文介绍了一种软开关非隔离双向 DC-DC 转换器,它无需任何额外的辅助开关即可提高电压转换率。在所提出的转换器中,通过采用耦合电感器方法,实现了改进的升压/降压增益转换。此外,无论功率流向如何,辅助电路都能为所有半导体元件提供软开关条件,而不会产生任何额外的电压应力。另一个开关有助于为主开关提供软开关条件。此外,用于提供软开关条件的开关还可用作同步整流器。为实现软开关而增加的电路由一个与转换器主电感耦合的电感和两个辅助二极管组成。辅助二极管受益于零电流开关条件。所有半导体器件的完全软开关条件,消除了反向恢复问题,而且元件数量少,从而减少了开关损耗,提高了效率。本文介绍了拟议转换器的详细工作原理和理论分析。此外,还提供了 220 W 原型电路的实验结果,以证实所提拓扑结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
期刊最新文献
Impact of using text classifiers for standardising maintenance data of wind turbines on reliability calculations Optimal spatial arrangement of modules for large-scale photovoltaic farms in complex topography Wind speed probabilistic forecast based wind turbine selection and siting for urban environment Front Cover: A novel prediction method for low wind output processes under very few samples based on improved W-DCGAN Identification of transmission line voltage sag sources based on multi-location information convolutional transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1