Marc Simard, Michael Denbina, Charles Marshak, Maxim Neumann
{"title":"A Global Evaluation of Radar-Derived Digital Elevation Models: SRTM, NASADEM, and GLO-30","authors":"Marc Simard, Michael Denbina, Charles Marshak, Maxim Neumann","doi":"10.1029/2023JG007672","DOIUrl":null,"url":null,"abstract":"<p>This study evaluates global radar-derived digital elevation models (DEMs), namely the Shuttle Radar Topography Mission (SRTM), NASADEM and GLO-30 DEMs. We evaluate their accuracy over bare-earth terrain and characterize elevation biases induced by forests using global Lidar measurements from the Ice, Cloud, and Land Elevation Satellite (ICESat)'s Geoscience Laser Altimeter System (GLAS), the Global Ecosystem Dynamics Investigation (GEDI) and the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instruments collected on locally flat terrain. Our analysis is based on error statistics calculated for each <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>°</mo>\n <mo>×</mo>\n <mn>1</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $1{}^{\\circ}\\times 1{}^{\\circ}$</annotation>\n </semantics></math> DEM tile, which are then summarized as global error percentiles, providing a regional characterization of DEM quality. We find NASADEM to be a significant improvement upon the SRTM V3. Over bare ground areas, the mean elevation bias and root mean square error (RMSE) improved from 0.68 to 2.50 m respectively to 0.00 and 1.5 m as compared to ICESat/GLAS. GLO-30 is more accurate with bare ground elevation bias and RMSE were below 0.05 and 0.55 m. Similar improvements were observed when compared to GEDI and ICESat-2 measurements. The DEM biases associated with the presence of vegetation vary linearly with canopy height, and more closely follow the <span></span><math>\n <semantics>\n <mrow>\n <mn>5</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mi>t</mi>\n <mi>h</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation> $5{0}^{th}$</annotation>\n </semantics></math> percentile of Lidar Relative Height (RH50). Other factors such as canopy density, radar frequency and Lidar technology also contribute to observed elevation biases. This global analysis highlights the potential of various technologies for mapping of Earth's topography, and the need for more advanced remote sensing observations that can resolve vegetation structure and sub-canopy ground elevation.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JG007672","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JG007672","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates global radar-derived digital elevation models (DEMs), namely the Shuttle Radar Topography Mission (SRTM), NASADEM and GLO-30 DEMs. We evaluate their accuracy over bare-earth terrain and characterize elevation biases induced by forests using global Lidar measurements from the Ice, Cloud, and Land Elevation Satellite (ICESat)'s Geoscience Laser Altimeter System (GLAS), the Global Ecosystem Dynamics Investigation (GEDI) and the ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instruments collected on locally flat terrain. Our analysis is based on error statistics calculated for each DEM tile, which are then summarized as global error percentiles, providing a regional characterization of DEM quality. We find NASADEM to be a significant improvement upon the SRTM V3. Over bare ground areas, the mean elevation bias and root mean square error (RMSE) improved from 0.68 to 2.50 m respectively to 0.00 and 1.5 m as compared to ICESat/GLAS. GLO-30 is more accurate with bare ground elevation bias and RMSE were below 0.05 and 0.55 m. Similar improvements were observed when compared to GEDI and ICESat-2 measurements. The DEM biases associated with the presence of vegetation vary linearly with canopy height, and more closely follow the percentile of Lidar Relative Height (RH50). Other factors such as canopy density, radar frequency and Lidar technology also contribute to observed elevation biases. This global analysis highlights the potential of various technologies for mapping of Earth's topography, and the need for more advanced remote sensing observations that can resolve vegetation structure and sub-canopy ground elevation.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology