{"title":"A general recipe to observe non-Abelian gauge field in metamaterials","authors":"Bingbing Liu, Tao Xu, Zhi Hong Hang","doi":"10.1515/nanoph-2024-0414","DOIUrl":null,"url":null,"abstract":"Recent research on non-Abelian phenomena has cast a new perspective on controlling light. In this work, we provide a simple and general approach to induce non-Abelian gauge field to tremble the light beam trajectory. With in-plane duality symmetry relaxed, our theoretical analysis finds that non-Abelian electric field can be synthesized through a simple real-space rotation of any biaxial material. With orthogonal optical modes excited, their interference leads to an oscillation of the propagating optical beam, which is a direct consequence of the emergence of non-Abelian electric field, influencing light in a manner similar with how electric fields act on charged particles. Our microwave experiments provide unambiguous evidence to the observation of such an optical <jats:italic>Zitterbewegung</jats:italic> effect where excellent agreement can be found between theorical derivation, numerical simulations and experiments. By extending the idea to optical regime using natural material, we here provide another example to shake the general intuition that light travels in straight lines in homogeneous media.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research on non-Abelian phenomena has cast a new perspective on controlling light. In this work, we provide a simple and general approach to induce non-Abelian gauge field to tremble the light beam trajectory. With in-plane duality symmetry relaxed, our theoretical analysis finds that non-Abelian electric field can be synthesized through a simple real-space rotation of any biaxial material. With orthogonal optical modes excited, their interference leads to an oscillation of the propagating optical beam, which is a direct consequence of the emergence of non-Abelian electric field, influencing light in a manner similar with how electric fields act on charged particles. Our microwave experiments provide unambiguous evidence to the observation of such an optical Zitterbewegung effect where excellent agreement can be found between theorical derivation, numerical simulations and experiments. By extending the idea to optical regime using natural material, we here provide another example to shake the general intuition that light travels in straight lines in homogeneous media.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.