Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi
{"title":"Longitudinal analysis of the gut microbiota during anti-PD-1 therapy reveals stable microbial features of response in melanoma patients","authors":"Angeli D.G. Macandog, Carlotta Catozzi, Mariaelena Capone, Amir Nabinejad, Padma P. Nanaware, Shujing Liu, Smita Vinjamuri, Johanna A. Stunnenberg, Serena Galiè, Maria Giovanna Jodice, Francesca Montani, Federica Armanini, Ester Cassano, Gabriele Madonna, Domenico Mallardo, Benedetta Mazzi, Salvatore Pece, Maria Tagliamonte, Vito Vanella, Massimo Barberis, Luigi Nezi","doi":"10.1016/j.chom.2024.10.006","DOIUrl":null,"url":null,"abstract":"Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of <em>Lachnospiraceae</em> (<em>FLach</em>) as structural homologs of tumor-associated antigens, detect <em>FLach</em>-reactive CD8<sup>+</sup> T cells in complete responders before ICI therapy, and demonstrate that <em>FLach</em> peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"62 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.10.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data. We followed patients with unresectable melanoma from baseline and during anti-PD-1 therapy, collecting fecal and blood samples that were surveyed for changes in the gut microbiota and immune markers. Varying patient responses were linked to different gut microbiota dynamics during ICI treatment. We select complete responders by their stable microbiota functions and validate them using multiple external cohorts and experimentally. We identify major histocompatibility complex class I (MHC class I)-restricted peptides derived from flagellin-related genes of Lachnospiraceae (FLach) as structural homologs of tumor-associated antigens, detect FLach-reactive CD8+ T cells in complete responders before ICI therapy, and demonstrate that FLach peptides improve antitumor immunity. These findings highlight the prognostic value of microbial functions and therapeutic potential of tumor-mimicking microbial peptides.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.