Olli Ihalainen , Theresa Sandmann , Uwe Rascher , Matti Mõttus
{"title":"Illumination correction for close-range hyperspectral images using spectral invariants and random forest regression","authors":"Olli Ihalainen , Theresa Sandmann , Uwe Rascher , Matti Mõttus","doi":"10.1016/j.rse.2024.114467","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying materials and retrieving their properties from spectral imagery is based on their spectral reflectance calculated from the ratio of reflected radiance to the incident irradiance. However, obtaining the true reflectances of materials within a vegetation canopy is challenging given the varying illumination conditions across the canopy – i.e., the irradiance incident on a surface inside the canopy – caused by its complex 3D structure. Instead, in remote sensing, reflectances are calculated from the ratio of the spectral radiance measured by the sensor to the top-of-canopy (TOC) spectral irradiance, resulting in apparent reflectances that can significantly differ from the true reflectance spectra. To address this issue, we present a physically based illumination correction method for retrieving the true reflectances from close-range hyperspectral TOC reflectance images. The method uses five spectral invariant parameters to predict the illumination conditions from TOC reflectance and compute the corrected spectrum using a physically based model. For computational efficiency, the spectrally invariant parameters were retrieved using random forest regression trained with Monte Carlo ray tracing simulations. The method was tested on close-range imaging spectroscopy data from dense and sparse vegetation canopies for which reference in situ spectral measurements were available. This work is a step toward resolving the 3D radiation regime in vegetation canopies from TOC hyperspectral imagery. The retrieved spectral invariants provide a physical connection to the structure of the observed vegetation canopy. The true spectra of artificial and natural materials in a vegetation canopy, determined under various illumination conditions, allow their more robust (bio)chemical characterization, opening new applications in vegetation monitoring and material detection, and machine learning makes it possible to apply the method rapidly to large hyperspectral image sets.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114467"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004930","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying materials and retrieving their properties from spectral imagery is based on their spectral reflectance calculated from the ratio of reflected radiance to the incident irradiance. However, obtaining the true reflectances of materials within a vegetation canopy is challenging given the varying illumination conditions across the canopy – i.e., the irradiance incident on a surface inside the canopy – caused by its complex 3D structure. Instead, in remote sensing, reflectances are calculated from the ratio of the spectral radiance measured by the sensor to the top-of-canopy (TOC) spectral irradiance, resulting in apparent reflectances that can significantly differ from the true reflectance spectra. To address this issue, we present a physically based illumination correction method for retrieving the true reflectances from close-range hyperspectral TOC reflectance images. The method uses five spectral invariant parameters to predict the illumination conditions from TOC reflectance and compute the corrected spectrum using a physically based model. For computational efficiency, the spectrally invariant parameters were retrieved using random forest regression trained with Monte Carlo ray tracing simulations. The method was tested on close-range imaging spectroscopy data from dense and sparse vegetation canopies for which reference in situ spectral measurements were available. This work is a step toward resolving the 3D radiation regime in vegetation canopies from TOC hyperspectral imagery. The retrieved spectral invariants provide a physical connection to the structure of the observed vegetation canopy. The true spectra of artificial and natural materials in a vegetation canopy, determined under various illumination conditions, allow their more robust (bio)chemical characterization, opening new applications in vegetation monitoring and material detection, and machine learning makes it possible to apply the method rapidly to large hyperspectral image sets.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.