Yichen Liu , Yisheng Gao , Rui Niu , Zunyue Zhang , Guo-Wei Lu , Haofeng Hu , Tiegen Liu , Zhenzhou Cheng
{"title":"Rapid and accurate bacteria identification through deep-learning-based two-dimensional Raman spectroscopy","authors":"Yichen Liu , Yisheng Gao , Rui Niu , Zunyue Zhang , Guo-Wei Lu , Haofeng Hu , Tiegen Liu , Zhenzhou Cheng","doi":"10.1016/j.aca.2024.343376","DOIUrl":null,"url":null,"abstract":"<div><div>Surface-enhanced Raman spectroscopy (SERS) offers a distinctive vibrational fingerprint of the molecules and has led to widespread applications in medical diagnosis, biochemistry, and virology. With the rapid development of artificial intelligence (AI) technology, AI-enabled Raman spectroscopic techniques, as a promising avenue for biosensing applications, have significantly boosted bacteria identification. By converting spectra into images, the dataset is enriched with more detailed information, allowing AI to identify bacterial isolates with enhanced precision. However, previous studies usually suffer from a trade-off between high-resolution spectrograms for high-accuracy identification and short training time for data processing. Here, we present an efficient bacteria identification strategy that combines deep learning models with a spectrogram encoding algorithm based on wavelet packet transform and Gramian angular field techniques. In contrast to the direct analysis of raw Raman spectra, our approach utilizes wavelet packet transform techniques to compress the spectra by a factor of 1/15, while concurrently maintaining state-of-the-art accuracy by amplifying the subtle differences via Gramian angular field techniques. The results demonstrate that our approach can achieve a 99.64 % and a 90.55 % identification accuracy for two types of bacterial isolates and thirty types of bacterial isolates, respectively, while a 90 % reduction in training time compared to the conventional methods. To verify the model's stability, Gaussian noises were superimposed on the testing dataset, showing a specific generalization ability and superior performance. This algorithm has the potential for integration into on-site testing protocols and is readily updatable with new bacterial isolates. This study provides profound insights and contributes to the current understanding of spectroscopy, paving the way for accurate and rapid bacteria identification in diverse applications of environment monitoring, food safety, microbiology, and public health.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1332 ","pages":"Article 343376"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024011772","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman spectroscopy (SERS) offers a distinctive vibrational fingerprint of the molecules and has led to widespread applications in medical diagnosis, biochemistry, and virology. With the rapid development of artificial intelligence (AI) technology, AI-enabled Raman spectroscopic techniques, as a promising avenue for biosensing applications, have significantly boosted bacteria identification. By converting spectra into images, the dataset is enriched with more detailed information, allowing AI to identify bacterial isolates with enhanced precision. However, previous studies usually suffer from a trade-off between high-resolution spectrograms for high-accuracy identification and short training time for data processing. Here, we present an efficient bacteria identification strategy that combines deep learning models with a spectrogram encoding algorithm based on wavelet packet transform and Gramian angular field techniques. In contrast to the direct analysis of raw Raman spectra, our approach utilizes wavelet packet transform techniques to compress the spectra by a factor of 1/15, while concurrently maintaining state-of-the-art accuracy by amplifying the subtle differences via Gramian angular field techniques. The results demonstrate that our approach can achieve a 99.64 % and a 90.55 % identification accuracy for two types of bacterial isolates and thirty types of bacterial isolates, respectively, while a 90 % reduction in training time compared to the conventional methods. To verify the model's stability, Gaussian noises were superimposed on the testing dataset, showing a specific generalization ability and superior performance. This algorithm has the potential for integration into on-site testing protocols and is readily updatable with new bacterial isolates. This study provides profound insights and contributes to the current understanding of spectroscopy, paving the way for accurate and rapid bacteria identification in diverse applications of environment monitoring, food safety, microbiology, and public health.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.