Yifan Li, Xueying Wan, Zhigang Chen, Ding Ding, Hao Li, Ning Zhang, Dong Liu, Yi Cui
{"title":"Activity Enhancement of Molybdenum Carbide in Alkaline Hydrogen Evolution Reaction through Oxidation-Gradient Modulation","authors":"Yifan Li, Xueying Wan, Zhigang Chen, Ding Ding, Hao Li, Ning Zhang, Dong Liu, Yi Cui","doi":"10.1021/acscatal.4c01779","DOIUrl":null,"url":null,"abstract":"Featured by their Pt-like electronic structure, molybdenum carbides have been widely developed for efficiently catalyzing the hydrogen evolution reaction (HER). It is noteworthy that the oxophilicity of transition-metal atoms can give rise to the inevitable surface oxidation of molybdenum carbides, which has a noticeable impact on their HER activities. However, such a significant detail was usually documented in theory simulations and rarely explored by well-controlled experiments. Herein, advanced surface-science techniques using vacuum-connected setups are performed to deliberately prepare oxidation-gradient molybdenum carbide-oxide model electrocatalysts and evaluate the corresponding alkaline HER performance. The performance evaluations demonstrate that the minimal oxygen-modified Mo<sub>2</sub>C exhibits the best alkaline HER activity among all model electrocatalysts. In situ XPS combined with quasi in situ XPS under different applied negative potentials reveals that tailoring the Mo<sub>2</sub>C surface decorated with oxygen-containing species can facilitate the desorption of produced OH* intermediates from water activation, thus avoiding the deep oxidation issue of the catalyst surface and accelerating the regeneration of active sites in the alkaline HER process. Moreover, a comparable trend of HER performance is also observed on the synthetically practical Mo<sub>2</sub>C powder catalysts, which further proves our hypothesis deduced from the model system. Our strategy of oxygen-terminated Mo<sub>2</sub>C model electrocatalysts and the utilization of advanced spectroscopy characterizations may pave an interesting route for the rational design of low-cost but highly efficient oxygen-modified molybdenum carbide catalysts for practical water electrolysis.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c01779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Featured by their Pt-like electronic structure, molybdenum carbides have been widely developed for efficiently catalyzing the hydrogen evolution reaction (HER). It is noteworthy that the oxophilicity of transition-metal atoms can give rise to the inevitable surface oxidation of molybdenum carbides, which has a noticeable impact on their HER activities. However, such a significant detail was usually documented in theory simulations and rarely explored by well-controlled experiments. Herein, advanced surface-science techniques using vacuum-connected setups are performed to deliberately prepare oxidation-gradient molybdenum carbide-oxide model electrocatalysts and evaluate the corresponding alkaline HER performance. The performance evaluations demonstrate that the minimal oxygen-modified Mo2C exhibits the best alkaline HER activity among all model electrocatalysts. In situ XPS combined with quasi in situ XPS under different applied negative potentials reveals that tailoring the Mo2C surface decorated with oxygen-containing species can facilitate the desorption of produced OH* intermediates from water activation, thus avoiding the deep oxidation issue of the catalyst surface and accelerating the regeneration of active sites in the alkaline HER process. Moreover, a comparable trend of HER performance is also observed on the synthetically practical Mo2C powder catalysts, which further proves our hypothesis deduced from the model system. Our strategy of oxygen-terminated Mo2C model electrocatalysts and the utilization of advanced spectroscopy characterizations may pave an interesting route for the rational design of low-cost but highly efficient oxygen-modified molybdenum carbide catalysts for practical water electrolysis.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.