Ruyue Cao, Qiao-Lin Yang, Hui-Xiong Deng, Su-Huai Wei, John Robertson, Jun-Wei Luo
{"title":"Softening of the optical phonon by reduced interatomic bonding strength without depolarization","authors":"Ruyue Cao, Qiao-Lin Yang, Hui-Xiong Deng, Su-Huai Wei, John Robertson, Jun-Wei Luo","doi":"10.1038/s41586-024-08099-0","DOIUrl":null,"url":null,"abstract":"Softening of the transverse optical (TO) phonon, which could trigger ferroelectric phase transition, can usually be achieved by enhancing the long-range Coulomb interaction over the short-range bonding force1, for example, by increasing the Born effective charges2. However, it suffers from depolarization effects3,4 as the induced ferroelectricity is suppressed on size reduction of the host materials towards high-density nanoscale electronics. Here, we present an alternative route to drive the TO phonon softening by showing that the abnormal soft TO phonon in rocksalt-structured ultrawide-bandgap BeO (ref. 5) is mainly induced by a substantial reduction in the short-range bonding interaction due to the Be–O bond stretching caused by an electron cloud-overlap-induced Coulomb repulsion between two adjacent oxygen ions that are arranged octahedrally around an extremely small Be ion. We further demonstrate the emergence of robust ferroelectricity in strain-induced perovskite BaZrO3 and ultrathin HfO2 and ZrO2 films6,7 grown epitaxially on lattice-mismatched SiO2/Si substrate arising from the softening of the TO phonon driven by a reduction in the short-range bonding strength of biaxial strain-induced stretching bonds. These findings shed light on developing a unified theory for ferroelectricity enhancement in ultrathin films free from depolarization fields by tailoring chemical bonds using ionic radius differences, strains, doping and lattice distortions. An alternative route to drive the transverse optical phonon softening sheds light on developing a unified theory for ferroelectricity enhancement in ultrathin films free from depolarization fields using ionic radius differences and strains, among other methods.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08099-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Softening of the transverse optical (TO) phonon, which could trigger ferroelectric phase transition, can usually be achieved by enhancing the long-range Coulomb interaction over the short-range bonding force1, for example, by increasing the Born effective charges2. However, it suffers from depolarization effects3,4 as the induced ferroelectricity is suppressed on size reduction of the host materials towards high-density nanoscale electronics. Here, we present an alternative route to drive the TO phonon softening by showing that the abnormal soft TO phonon in rocksalt-structured ultrawide-bandgap BeO (ref. 5) is mainly induced by a substantial reduction in the short-range bonding interaction due to the Be–O bond stretching caused by an electron cloud-overlap-induced Coulomb repulsion between two adjacent oxygen ions that are arranged octahedrally around an extremely small Be ion. We further demonstrate the emergence of robust ferroelectricity in strain-induced perovskite BaZrO3 and ultrathin HfO2 and ZrO2 films6,7 grown epitaxially on lattice-mismatched SiO2/Si substrate arising from the softening of the TO phonon driven by a reduction in the short-range bonding strength of biaxial strain-induced stretching bonds. These findings shed light on developing a unified theory for ferroelectricity enhancement in ultrathin films free from depolarization fields by tailoring chemical bonds using ionic radius differences, strains, doping and lattice distortions. An alternative route to drive the transverse optical phonon softening sheds light on developing a unified theory for ferroelectricity enhancement in ultrathin films free from depolarization fields using ionic radius differences and strains, among other methods.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.