Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-10-30 DOI:10.1038/s41586-024-08118-0
Hongbin Yang, Yinong Zhou, Guangyao Miao, Ján Rusz, Xingxu Yan, Francisco Guzman, Xiaofeng Xu, Xianghan Xu, Toshihiro Aoki, Paul Zeiger, Xuetao Zhu, Weihua Wang, Jiandong Guo, Ruqian Wu, Xiaoqing Pan
{"title":"Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface","authors":"Hongbin Yang, Yinong Zhou, Guangyao Miao, Ján Rusz, Xingxu Yan, Francisco Guzman, Xiaofeng Xu, Xianghan Xu, Toshihiro Aoki, Paul Zeiger, Xuetao Zhu, Weihua Wang, Jiandong Guo, Ruqian Wu, Xiaoqing Pan","doi":"10.1038/s41586-024-08118-0","DOIUrl":null,"url":null,"abstract":"<p>The remarkable increase in superconducting transition temperature (<i>T</i><sub>c</sub>) observed at the interface of one-unit-cell FeSe films on SrTiO<sub>3</sub> substrates (1 uc FeSe/STO)<sup>1</sup> has attracted considerable research into the interface effects<sup>2,3,4,5,6</sup>. Although this high <i>T</i><sub>c</sub> is thought to be associated with electron–phonon coupling (EPC)<sup>2</sup>, the microscopic coupling mechanism and its role in the superconductivity remain elusive. Here we use momentum-selective high-resolution electron energy loss spectroscopy to atomically resolve the phonons at the FeSe/STO interface. We uncover new optical phonon modes, coupling strongly with electrons, in the energy range of 75–99 meV. These modes are characterized by out-of-plane vibrations of oxygen atoms in the interfacial double-TiO<sub><i>x</i></sub> layer and the apical oxygens in STO. Our results also demonstrate that the EPC strength and superconducting gap of 1 uc FeSe/STO are closely related to the interlayer spacing between FeSe and the TiO<sub><i>x</i></sub> terminated STO. These findings shed light on the microscopic origin of the interfacial EPC and provide insights into achieving large and consistent <i>T</i><sub>c</sub> enhancement in FeSe/STO and potentially other superconducting systems.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08118-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable increase in superconducting transition temperature (Tc) observed at the interface of one-unit-cell FeSe films on SrTiO3 substrates (1 uc FeSe/STO)1 has attracted considerable research into the interface effects2,3,4,5,6. Although this high Tc is thought to be associated with electron–phonon coupling (EPC)2, the microscopic coupling mechanism and its role in the superconductivity remain elusive. Here we use momentum-selective high-resolution electron energy loss spectroscopy to atomically resolve the phonons at the FeSe/STO interface. We uncover new optical phonon modes, coupling strongly with electrons, in the energy range of 75–99 meV. These modes are characterized by out-of-plane vibrations of oxygen atoms in the interfacial double-TiOx layer and the apical oxygens in STO. Our results also demonstrate that the EPC strength and superconducting gap of 1 uc FeSe/STO are closely related to the interlayer spacing between FeSe and the TiOx terminated STO. These findings shed light on the microscopic origin of the interfacial EPC and provide insights into achieving large and consistent Tc enhancement in FeSe/STO and potentially other superconducting systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeSe/SrTiO3 界面的声子模式和电子-声子耦合
在硒化钛基底上的一单元硒化铁薄膜(1 uc FeSe/STO)1 的界面上观察到超导转变温度(Tc)明显升高,这吸引了对界面效应的大量研究2,3,4,5,6。尽管这种高 Tc 被认为与电子-声子耦合(EPC)2 有关,但其微观耦合机制及其在超导中的作用仍然难以捉摸。在这里,我们使用动量选择性高分辨率电子能量损失光谱来原子解析 FeSe/STO 界面的声子。我们在 75-99 meV 的能量范围内发现了与电子强耦合的新光学声子模式。这些模式的特征是界面双氧化钛层中氧原子和 STO 中顶端氧原子的面外振动。我们的研究结果还表明,1 uc FeSe/STO 的 EPC 强度和超导间隙与 FeSe 和端接 TiOx 的 STO 之间的层间距密切相关。这些发现揭示了界面 EPC 的微观起源,并为在 FeSe/STO 以及潜在的其他超导系统中实现巨大而稳定的 Tc 增强提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
I had to let a student go and I feel as though I failed them — how do I do better next time? How I hunt down fake degrees and zombie universities ‘A big, big win’: plan to pay for wildlife conservation emerges at biodiversity summit Chemists make ‘impossible’ molecules that break 100-year-old bonding rule The eight obituaries of a Shanghai person
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1