Acute and chronic effects of polymetallic nodule leachate in the marine copepod Tigriopus koreanus.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-10 Epub Date: 2024-10-31 DOI:10.1016/j.scitotenv.2024.177274
Yeun Park, Hye-Min Kang, Kongtae Ra, Chan Min Yoo, Jae Gon Park, Ji-Won Hwang, Kyun-Woo Lee
{"title":"Acute and chronic effects of polymetallic nodule leachate in the marine copepod Tigriopus koreanus.","authors":"Yeun Park, Hye-Min Kang, Kongtae Ra, Chan Min Yoo, Jae Gon Park, Ji-Won Hwang, Kyun-Woo Lee","doi":"10.1016/j.scitotenv.2024.177274","DOIUrl":null,"url":null,"abstract":"<p><p>Polymetallic nodules containing manganese, iron, and other metals are found in the seafloor. Leachates of polymetallic nodules can be discharged into seawater during ocean mining, disrupting marine ecosystems and causing adverse effects on marine organisms. Here, we investigate the acute and chronic effects of two polymetallic nodule leachates on the life-history parameters (mortality, development, and fecundity) and transcriptional differences of detoxification, antioxidant, and reproduction-related genes for cytochrome P450, glutathione S-transferase, and vitellogenin in the marine copepod Tigriopus koreanus. We also examine single and combined effects for six metals whose concentrations differ between the two leachates. No significant changes in mortality were observed, but developmental time was significantly shortened and fecundity increased in T. koreanus in response to exposure to the leachates. No adverse effects on physiological parameters were seen, but transcriptional differences by leachates were evident. In addition, manganese and iron in the leachates improved copepod development when they were combined with other metals. The findings of this study elucidate the potential impact of polymetallic nodule leachates on marine copepods.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177274"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177274","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polymetallic nodules containing manganese, iron, and other metals are found in the seafloor. Leachates of polymetallic nodules can be discharged into seawater during ocean mining, disrupting marine ecosystems and causing adverse effects on marine organisms. Here, we investigate the acute and chronic effects of two polymetallic nodule leachates on the life-history parameters (mortality, development, and fecundity) and transcriptional differences of detoxification, antioxidant, and reproduction-related genes for cytochrome P450, glutathione S-transferase, and vitellogenin in the marine copepod Tigriopus koreanus. We also examine single and combined effects for six metals whose concentrations differ between the two leachates. No significant changes in mortality were observed, but developmental time was significantly shortened and fecundity increased in T. koreanus in response to exposure to the leachates. No adverse effects on physiological parameters were seen, but transcriptional differences by leachates were evident. In addition, manganese and iron in the leachates improved copepod development when they were combined with other metals. The findings of this study elucidate the potential impact of polymetallic nodule leachates on marine copepods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多金属结核沥滤液对海洋桡足类 Tigriopus koreanus 的急性和慢性影响。
海底发现了含有锰、铁和其他金属的多金属结核。在海洋采矿过程中,多金属结核的浸出物会被排入海水中,破坏海洋生态系统,对海洋生物造成不利影响。在此,我们研究了两种多金属结核浸出物对海洋桡足类 Tigriopus koreanus 的生命史参数(死亡率、发育和繁殖力)以及细胞色素 P450、谷胱甘肽 S-转移酶和卵黄素等解毒、抗氧化和繁殖相关基因转录差异的急性和慢性影响。我们还研究了两种浸出液中浓度不同的六种金属的单一影响和综合影响。我们没有观察到死亡率有明显变化,但在接触沥滤液后,T. koreanus 的发育时间明显缩短,繁殖力增加。沥滤液对生理参数没有不利影响,但转录差异明显。此外,当沥滤液中的锰和铁与其他金属结合在一起时,会改善桡足类的发育。本研究结果阐明了多金属结核浸出物对海洋桡足类的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Complex interactions of rare earth elements in aquatic systems: Comparing observed and predicted cellular responses on Mytilus galloprovincialis. Identification of pesticide mixtures to which French agricultural workers and farm-owners are exposed: Results from the Agriculture and Cancer (AGRICAN) cohort study. Dog swimming and ectoparasiticide water contamination in urban conservation areas: A case study on Hampstead Heath, London. Exploring compost production potential and its economic benefits and greenhouse gas mitigation in Addis Ababa, Ethiopia. Graphene-encapsulated nanocomposites: Synthesis, environmental applications, and future prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1