{"title":"Effects of salinity on iron-organic carbon binding in the rhizosphere of Kandelia obovata: Insights from root exudate analysis.","authors":"Ying Lei, Yuxin Bi, Xinhan Dong, Hongcheng Li, Xiaoqing Gao, Xiuzhen Li, Zhongzheng Yan","doi":"10.1016/j.scitotenv.2024.177214","DOIUrl":null,"url":null,"abstract":"<p><p>Iron (Fe) oxides in wetland soils are crucial for stabilizing soil organic carbon (SOC) by forming stable Fe-OC complexes, thus protecting SOC from microbial breakdown and aiding its preservation. This study delves into the response of Fe (hydr-)oxides to salt stress, a relatively unexplored area, by examining Kandelia obovata, a key mangrove species. Through controlled climate chamber experiments, we investigated how salt stress affects the interactions between Fe (hydr-)oxides and SOC in root exudates (REs) and rhizosphere soils. Our results demonstrate that salinity at 30 ppt significantly increases the release of sugars, amino acids, inorganic nutrients (NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>), and phosphorus in K. obovata's REs, while reducing crystalline and amorphous Fe (hydr-)oxides and increasing complexed Fe (hydr-)oxide levels, thereby reducing their crystallinity in rhizosphere soils. Importantly, at elevated salinity (30 ppt), the Fe-OC bond in the rhizosphere shows greater stability, indicating enhanced resilience to salt stress compared to bulk soil. Salt stress also raises the carbon to nitrogen (C/N) ratio in REs. Testing artificial REs (AREs) with different C/N ratios showed that Fe (hydr-)oxide content decreases at C/N ratios of 10 and 30 compared to the control, whereas Fe-OC content increases with higher C/N ratios. Introduction of AREs with a C/N ratio of 20 significantly affected rhizosphere crystalline Fe (hydr-)oxide and Fe-OC content, highlighting AREs' impact on the binding of Fe (hydr-) oxides and OC. The presence of soil microorganisms was critical for the binding of Fe (hydr-) oxides and OC, as sterilized soil exhibited significantly lower levels of Fe (hydr-) oxides and Fe-OC compared to unsterilized soil. This research reveals that under salt stress, mangrove plants play a crucial role in stabilizing rhizosphere SOC by influencing Fe (hydr-) oxide crystallinity and promoting the formation of stable Fe-OC complexes, highlighting the complex interactions between plant REs, salt stress, and soil minerals.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177214"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177214","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Iron (Fe) oxides in wetland soils are crucial for stabilizing soil organic carbon (SOC) by forming stable Fe-OC complexes, thus protecting SOC from microbial breakdown and aiding its preservation. This study delves into the response of Fe (hydr-)oxides to salt stress, a relatively unexplored area, by examining Kandelia obovata, a key mangrove species. Through controlled climate chamber experiments, we investigated how salt stress affects the interactions between Fe (hydr-)oxides and SOC in root exudates (REs) and rhizosphere soils. Our results demonstrate that salinity at 30 ppt significantly increases the release of sugars, amino acids, inorganic nutrients (NH4+, NO3-), and phosphorus in K. obovata's REs, while reducing crystalline and amorphous Fe (hydr-)oxides and increasing complexed Fe (hydr-)oxide levels, thereby reducing their crystallinity in rhizosphere soils. Importantly, at elevated salinity (30 ppt), the Fe-OC bond in the rhizosphere shows greater stability, indicating enhanced resilience to salt stress compared to bulk soil. Salt stress also raises the carbon to nitrogen (C/N) ratio in REs. Testing artificial REs (AREs) with different C/N ratios showed that Fe (hydr-)oxide content decreases at C/N ratios of 10 and 30 compared to the control, whereas Fe-OC content increases with higher C/N ratios. Introduction of AREs with a C/N ratio of 20 significantly affected rhizosphere crystalline Fe (hydr-)oxide and Fe-OC content, highlighting AREs' impact on the binding of Fe (hydr-) oxides and OC. The presence of soil microorganisms was critical for the binding of Fe (hydr-) oxides and OC, as sterilized soil exhibited significantly lower levels of Fe (hydr-) oxides and Fe-OC compared to unsterilized soil. This research reveals that under salt stress, mangrove plants play a crucial role in stabilizing rhizosphere SOC by influencing Fe (hydr-) oxide crystallinity and promoting the formation of stable Fe-OC complexes, highlighting the complex interactions between plant REs, salt stress, and soil minerals.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.