{"title":"Uniform PtCoRuRhFe high-entropy alloy nanoflowers: Multi-site synergistic signal amplification for colorimetric assay of captopril","authors":"Rui Zhang, Jia-Qi Li, Ai-Jun Wang, Pei Song, Wen Liu, Jiu-Ju Feng, Tuck Yun Cheang","doi":"10.1007/s00604-024-06746-x","DOIUrl":null,"url":null,"abstract":"<div><p>Uniform PtCoRuRhFe high-entropy alloy nanoflowers (HEANFs) were fabricated by a simple wet-chemical co-reduction method in oleylamine for quantitative colorimetric determination of captopril (CAP) based on multi-site synergistic signal amplification. Specifically, the peroxidase mimetic activity of the PtCoRuRhFe HEANFs was examined through catalysis of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation, whose catalytic mechanism was investigated by electron paramagnetic resonance (EPR) spectroscopy. The role of the ·O<sub>2</sub><sup>−</sup> was figured out during the catalytic procedure. Further, the oxidation of TMB (oxTMB) can be effectively reduced by CAP, accompanied by quickly transforming the solution color from blue to colorless. More importantly, the absorbance at 652 nm is linearly related to the CAP concentration in a range 5.0–50.0 mM with a low detection limit of 2.82 mM. The method has been applied to the determination of CAP in human urine samples. It offers a simple and high-efficiency method for facile and visual detection of CAP in hospitals.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06746-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Uniform PtCoRuRhFe high-entropy alloy nanoflowers (HEANFs) were fabricated by a simple wet-chemical co-reduction method in oleylamine for quantitative colorimetric determination of captopril (CAP) based on multi-site synergistic signal amplification. Specifically, the peroxidase mimetic activity of the PtCoRuRhFe HEANFs was examined through catalysis of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation, whose catalytic mechanism was investigated by electron paramagnetic resonance (EPR) spectroscopy. The role of the ·O2− was figured out during the catalytic procedure. Further, the oxidation of TMB (oxTMB) can be effectively reduced by CAP, accompanied by quickly transforming the solution color from blue to colorless. More importantly, the absorbance at 652 nm is linearly related to the CAP concentration in a range 5.0–50.0 mM with a low detection limit of 2.82 mM. The method has been applied to the determination of CAP in human urine samples. It offers a simple and high-efficiency method for facile and visual detection of CAP in hospitals.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.